Publications by authors named "Zhi-gang Fang"

Context: The article presents a comparative study of the electronic, magnetic and catalytic properties of CrPS, AlPS, GaPS and their expanded structures. It is finally found that: When n = 2, 3, the internal electron mobility of the configurations is stronger than when n = 0,1. When n = 1, the five configurations, except configuration 1Cr, are susceptible to both electrophilic and nucleophilic reactions at the same time.

View Article and Find Full Text PDF

Context: To comprehend the microscopic property alterations within the ConMoS cluster (n=1-5), this study investigates its internal interactions, electronic characteristics, and orbital correlations employing density functional theory. Structural optimization and theoretical analysis of the cluster are conducted using the Gaussian09 software package, considering various spin multiplicities and employing the B3LYP/def2tzvp quantum chemical method as the computational standard. The outcomes reveal the optimization of the cluster, resulting in 21 stable configurations while continually acquiring energy from the external environment.

View Article and Find Full Text PDF

A range of circular (Circ) RNAs have been demonstrated to be of therapeutic significance for the treatment of acute lymphoblastic leukemia (ALL). Here, we investigated the mechanisms underlying the action of Circ-PRKDC and the microRNA-653-5p/Reelin (miR-653-5p/RELN) axis in T-cell ALL (T-ALL).Clinical specimens were obtained from patients with T-ALL (n = 39) and healthy controls (n = 30).

View Article and Find Full Text PDF

Background: Acute myeloid leukemia (AML) is a malignant hematological disease, originating from hematopoiesis stem cell differentiation obstruction and clonal proliferation. New reagents or biologicals for the treatment of AML are urgently needed, and exosomes have been identified as candidate biomarkers for disease diagnosis and prognosis. This study aimed to investigate the effects of exosomes from bone marrow mesenchymal stem cells (BMSCs) on AML cells as well as the underlying microRNA (miRNA)-mediated mechanisms.

View Article and Find Full Text PDF

Long-term utilization of immunosuppression in organ transplant recipients leads to decreased immune-mediated tumor surveillance and increased risk of developing malignant tumors. However, chronic myeloid leukemia (CML) following living donor liver transplantation (LDLT) is rarely reported. The current case report presents a 42-year-old male patient who developed CML 14 months following LDLT.

View Article and Find Full Text PDF

The development of targeted tyrosine kinase inhibitors (TKIs) has succeeded in altering the course of chronic myeloid leukemia (CML). However, a number of patients have failed to respond or experienced disease relapse following TKI treatment. Proviral integration site for moloney murine leukemia virus‑1 (PIM‑1) is a serine/threonine kinase that participates in regulating apoptosis, cell cycle, signal transduction and transcriptional pathways, which are associated with tumor progression, and poor prognosis.

View Article and Find Full Text PDF

Zoledronic acid (ZOL), a nitrogen‑containing bisphosphonate, is widely used in metastatic bone disease. Previous studies indicate that ZOL has marked anti‑leukemia activity, however, the underlying mechanism of action remains to be elucidated. The present study aimed to explore the mechanism of the anti‑leukemia effect of ZOL in leukemia cells.

View Article and Find Full Text PDF

Background: Chronic myelogenous leukemia (CML) is a hematological stem cell disorder. Tyrosine kinase inhibitors (TKIs) are the standard treatments for CML, but a number of patients fail to respond effectively due to gene mutations. Celecoxib, a cyclooxygenase-2 (COX-2) inhibitor, has been shown to have anti-tumor effect on solid tumor whereas the anti-CML effect and its underlying mechanism have not been completely elucidated.

View Article and Find Full Text PDF

The interaction between bone marrow stromal cells and leukemia cells is critical for the persistence and progression of leukemia, and this interaction may account for residual disease. However, the link between leukemia cells and their environment is still poorly understood. In our study, runt‑related transcription factor 3 (RUNX3) was identified as a novel target gene affected by As2O3 and involved in mesenchymal stem cell (MSC)‑mediated protection of leukemia cells from As2O3‑induced apoptosis.

View Article and Find Full Text PDF

Nowadays, drug resistance still represents a major obstacle to successful acute myeloid leukemia (AML) treatment and the underlying mechanism is not fully elucidated. Here, we found that high expression of c-Myc was one of the cytogenetic characteristics in the drug-resistant leukemic cells. c-Myc over-expression in leukemic cells induced resistance to chemotherapeutic drugs, enhanced colony formation capacity and inhibited cell differentiation induced by all-trans retinoic acid (ATRA).

View Article and Find Full Text PDF

The combination of all-trans retinoic acid (ATRA) and arsenic trioxide (As2O3, ATO) has been effective in obtaining high clinical complete remission (CR) rates in acute promyelocytic leukemia (APL), but the long-term efficacy and safety among newly diagnosed APL patients are unclear. In this retrospective study, total 45 newly diagnosed APL patients received ATRA/chemotherapy combination regimen to induce remission. Among them, 43 patients (95.

View Article and Find Full Text PDF

Aurora kinases are overexpressed in large numbers of tumors and considered as potential therapeutic targets. In this study, we found that the Aurora kinases inhibitors MK-0457 (MK) and ZM447439 (ZM) induced polyploidization in acute myeloid leukemia (AML) cell lines. The level of glycolytic metabolism was significantly increased in the polyploidy cells, which were sensitive to glycolysis inhibitor 2-deoxy-D-glucose (2DG), suggesting that polyploidy cells might be eliminated by metabolism deprivation.

View Article and Find Full Text PDF

Purpose: Epigenetic therapy has had a significant impact on the management of haematologic malignancies. The aim of this study was to assess whether 5-aza-CdR and TSA inhibit the growth of leukaemia cells and induce caspase-3-dependent apoptosis by upregulating RUNX3 expression.

Methods: K562 and Reh cells were treated with 5-aza-CdR, TSA or both compounds.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptor gamma (PPARγ) plays an important role in regulating energy balance, glucose and lipid metabolisms and inflammation. PPARγ also exerts multiple anti-cancer effects including tumor growth and angiogenesis inhibition, induction of cell differentiation, and apoptosis. Perturbed Wnt/β-catenin signaling likely plays a key role in tumorigenesis and the interaction between PPARγ and the transcriptional regulator β-catenin maybe important in this process.

View Article and Find Full Text PDF

It has been well established that inflammation plays a critical role in cancer. Chronic inflammation promotes tumorgenesis and metastasis, which suggests that anti-inflammation drugs could act as a tumor suppressor. It is known that the peroxisome proliferator-activated receptor γ (PPARγ) has been implicated in anti-inflammatory responses; however, the anti-tumor effects of PPARγ have not been intensively investigated.

View Article and Find Full Text PDF

Tanshinone I (Tan-I) is a diterpene quinone extracted from the traditional herbal medicine Salvia miltiorrhiza Bunge. Recently, Tan-I has been reported to have anti-tumor effects. In this study, we investigated the growth inhibition and apoptosis inducing effects of Tan-I on three kinds of monocytic leukemia cells (U937, THP-1 and SHI 1).

View Article and Find Full Text PDF

Tanshinone I (Tan I), a diterpene quinone extracted from herbal medicine Salvia miltiorrhiza Bunge, has recently been reported to have antitumor effects. As the mechanism of its proapoptotic effects on human myeloid leukemia cells has not been extensively studied, we performed an in-depth evaluation of the effects of Tan I on apoptosis in human K562 and HL-60 cells. The results revealed that Tan I could inhibit the growth of leukemia cells and cause apoptosis in a time- and dose-dependent manner.

View Article and Find Full Text PDF

A sensitive and specific liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantification of cyclosporine A (CyA) and the identification of its metabolites in rat urine and feces. The analytes were extracted from waste samples via liquid-liquid extraction. A Turboionspray source was used as a detector.

View Article and Find Full Text PDF

In the present study we investigated the in vitro apoptosis inducing effects of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) ligand ciglitazone (CGZ) on acute promyelocytic leukemia (APL) NB4 cells and its mechanisms of action. The results revealed that CGZ (10-50 micromol/l) inhibited the growth of leukemia NB4 cells and caused apoptosis in a time- and dose-dependent manner. Apoptosis was observed clearly by flow cytometry (FCM) and DNA fragmentation analysis.

View Article and Find Full Text PDF

This study was aimed to investigate the effects of tumor antigen-loaded dendritic cells (DC) stimulating the specific cytotoxic T lymphocytes (CTL) on Jurkat cells in vitro. Peripheral blood mononuclear cells were isolated by Ficoll density gradient centrifugation from normal human heparinized blood, the adherent monocytes were cultured with granulocyte-macrophage colony stimulating factor (GM-CSF), interleukin-4 (IL-4), alpha tumor necrosis factor (TNF-alpha) and sCD40L, DCs were co-cultured with frozen-thawed antigen of Jurkat cells or WT1 peptides, and then T cells were triggered into specific CTL. The results showed that most suspended cells exhibited distinctive morphological features of DC which expressed CD40 (96%), CD86 (97%), CD80 (77%), CD1a (69%), and gained the powerful capacity to stimulate proliferation of allogeneic lymphocytes.

View Article and Find Full Text PDF