Aim: Diabetic foot has become the main cause of non-traumatic amputation. Stem cell therapy, especially mesenchymal stem cells (MSCs), holds a great promise as a therapy for diabetic foot with ischemia limb arterial disease. The aim of this pilot study is to evaluate the safety and efficacy of placenta-derived MSCs (P-MSCs) treatment for diabetic patients with critical limb ischemia (CLI).
View Article and Find Full Text PDFBackground: Multipotent mesenchymal stromal cell (MSC) therapy has been widely recognized as a feasible strategy for regenerating injured myocardial tissue. However, little is known about the efficacy of intravenous injection of allogeneic umbilical cord (UC) MSCs in preclinical models of porcine myocardial infarction.
Methods: Different dosages of allogeneic UC-MSCs or the vehicle [phosphate-buffered saline (PBS)] were delivered intravenously into an acute myocardial infarction (AMI) porcine model twice after coronary ligation.
The ETS family transcription factor ESE3 is a crucial element in differentiation and development programs for many epithelial tissues. Here we report its role as a tumor suppressor in pancreatic cancer. We observed drastically lower ESE3 expression in pancreatic ductal adenocarcinomas (PDAC) compared with adjacent normal pancreatic tissue.
View Article and Find Full Text PDFIntroduction: Mesenchymal stem cells (MSCs) represent a heterogeneous cell population that is promising for regenerative medicine. The present study was designed to assess whether VCAM-1 can be used as a marker of MSC subpopulation with superior angiogenic potential.
Methods: MSCs were isolated from placenta chorionic villi (CV).
Background: The Notch signaling pathway is implicated in a broad range of developmental processes, including cell fate decisions. This study was designed to determine the role of Notch signaling in adipogenic differentiation of human bone marrow derived MSCs (BM-MSCs).
Methods: The Notch signaling was inhibited by the γ-secretase inhibitor N-[N-(3,5-difluor- ophenacetyl-L-alanyl)]-S-phenylglycine t-butylester (DAPT).
Stem Cell Res Ther
December 2014
Zhongguo Shi Yan Xue Ye Xue Za Zhi
June 2014
Mesenchymal stem cells (MSCs) could be obtained from many sources, and there are differences between them. This study was purposed to compare and analyze the basic biological characteristics of umbilical cord, adipose tissue-and bone marrow-derived MSC (UC-MSCs, AD-MSCs and BM-MSCs). The MSCs were isolated from umbilical cord, adipose tissue and bone marrow were cultured; the morphology of UC-MSCs, AD-MSCs and BM-MSCs was observed by using microscopy; the immunophenotype, differentiation potential and expression of peroxisome proliferation-activated receptor-γ (PPAR-γ) mRNA were detected by using flow cytometry, differentiation test (von kossais and 0:1 red O staining) and quantitative fluorescent PCR, respectively.
View Article and Find Full Text PDFAlleviation of hyperglycemia in chemical-induced diabetic mice has been reported after bone marrow transplantation. Nevertheless, the underlying mechanism remains elusive. In the present study, we transplanted genetically labeled primary mouse mesenchymal stem cells into the pancreas of the streptozotocin-treated hyperglycemic isogeneic mice, resulting in a decrease in blood glucose due to a recovery in beta cell mass.
View Article and Find Full Text PDFBackground: Mesenchymal stem cells are capable of self-renewal and multi-lineage differentiation. They are used extensively to treat several diseases. Traditionally, mesenchymal stem cells are cultured in serum-containing media, typically supplemented with fetal bovine serum (FBS).
View Article and Find Full Text PDFZhongguo Shi Yan Xue Ye Xue Za Zhi
December 2013
15-Deoxy-Δ(12), 14-prostaglandin J2 (15d-PGJ2), a well known peroxisome proliferator activated receptor (PPAR) γ ligand, has been shown to inhibit cellular proliferation and induce apoptosis and differentiation. However, whether 15d-PGJ2 influences the cytokines in the culture supernatant of bone marrow mesenchymal stem cells (BM-MSC) is unknown. This study was purposed to investigate the influence of 15d-PGJ2 on cytokines in the culture supernatant of BM-MSC.
View Article and Find Full Text PDFZhongguo Shi Yan Xue Ye Xue Za Zhi
December 2013
The main aim of this study was to investigate the biological activities and immune modulation changes of chorionic villi mesenchymal stem cells (CV-MSC) after long term culture. The morphology of the CV-MSC of passage 3 and passage 9 were observed by microscopy, and their phenotypes were detected by flow cytometry. CV-MSC of passage 3 and 9 were co-cultured with PHA-stimulated PBMNC, and IFN-γ concentration in culture medium was detected by ELISA.
View Article and Find Full Text PDFThis article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.
View Article and Find Full Text PDFZhongguo Shi Yan Xue Ye Xue Za Zhi
August 2013
This study was aimed to investigate the effect of IL-1β on hematopoietic support of human umbilical cord mesenchymal stem cells (hUC-MSC). 2×10(6) hUC-MSC were seeded in 75 cm(2) flasks, after adherence to wall for 2 h, 10 ng/ml IL-1β was added in hUC-MSC supernatant and cultured for 36 h, then the culture supernatants and cells were harvested. The effect of conditioned medium with/without IL-1β on CD34(+) cell hematopoietic support was observed, mRNA expression changes of hUC-MSC cultured in medium with/without IL-1β were monitored by real time PCR, the differences in hematopoiesis-related factors were detected by ELISA.
View Article and Find Full Text PDFCell Physiol Biochem
February 2014
Background: CD151 is highly expressed in breast cancer cells and has been shown to accelerate breast cancer by enhancing cell growth and motility, but its regulation is poorly understood. To explore post-translation regulation of CD151, for example microRNAs, will be of great importance to claim the mechanism.
Methods: A luciferase reporter assay was used to determine whether CD151 was a target of miR-124.
Zhongguo Shi Yan Xue Ye Xue Za Zhi
June 2013
Comparing to bone marrow mesenchymal stem cells (MSCs), placenta-derived MSCs have the advantages of adequate sources, low immunogenicity, little risk of viral contamination, and no ethical controversy, and thus possess a better prospect for clinical application. Placental tissue not only includes chorionic and amniotic, but also contains decidua basalis which locate in the maternal placenta surface. The biological characteristics of MSCs isolated from decidua basalis have not been well studied.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) reside in almost all of the body tissues, where they undergo self-renewal and multi-lineage differentiation. MSCs derived from different tissues share many similarities but also show some differences in term of biological properties. We aim to search for significant differences among various sources of MSCs and to explore their implications in physiopathology and clinical translation.
View Article and Find Full Text PDFHemangiopoietin (HAPO) is a novel growth factor stimulating the proliferation of hematopoietic and endothelial progenitor cells in vitro and in vivo. The native protein is a 294‑amino acid multimodular protein. The N‑terminus constitutes of two somatomedin B (SMB) homology domains that contain 14 cysteines.
View Article and Find Full Text PDFBackground: Mesenchymal stem cells (MSC) play important roles in modulating the activities of T lymphocytes, dendritic cells and natural killer cells. These immunoregulatory properties of MSC suggest their therapeutic potential in autoimmune diseases. However, the effects of MSC on B cells are still poorly understood.
View Article and Find Full Text PDFZhongguo Shi Yan Xue Ye Xue Za Zhi
August 2012
This study was aimed to explore whether the conditioned culture medium of human umbilical cord-derived mesenchymal stem cells (hUC-MSC) has supportive effects on hematopoiesis in vitro. hUC-MSC were cultured in 75 cm(2) culture flasks at a concentration of 2×10(6) cells per flask. After 48 h, the conditioned culture medium was harvested.
View Article and Find Full Text PDFZhongguo Shi Yan Xue Ye Xue Za Zhi
June 2012
Because advantage of tissue origin and proliferation potential, the umbilical cord-derived mesenchymal stem cells (UC-MSC) and placental chorionic villous-derived mesenchymal stem cells (CV-MSC) have clinical application potential, as compared with bone marrow MSC. But whether the differences of biological characteristics exist between UC-MSC and CV-MSC, which deserve to be further explored. This study was purposed to compare the biological characteristics of UC-MSC and CV-MSC.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) hold great promise as therapeutic agents in regenerative medicine and autoimmune diseases, based on their differentiation abilities and immunosuppressive properties. However, the therapeutic applications raise a series of questions about the safety of culture-expanded MSCs for human use. This paper summarized recent findings about safety issues of MSCs, in particular their genetic stability in long-term in vitro expansion, their cryopreservation, banking, and the role of serum in the preparation of MSCs.
View Article and Find Full Text PDFBackground/aims: Human umbilical cord mesenchymal stem cells (hUC-MSCs) possess immunosuppressive activities but the mechanisms of such activities are not fully understood. Here, we investigated the role of IL-6, one of the characteristic factors of MSCs, in the immunoregulating effect of hUC-MSCs on CD4(+) T lymphocytes.
Methods: The condition media from human peripheral blood mononuclear cells (hPBMCs) or CD14+/- cell were tested if stimulating IL-6 production by hUC-MSCs.