from Dali Bai Autonomous Prefecture, Yunnan Province, China, is described based on chorionic structure, nymph, and winged stages. The new species is closely related to (Kang & Yang, 1995), but it can be distinguished in the male imago stage by its mesonotum and penes morphology, coloration, and the forking point of the stem of MA+Rs on the forewing; in the nymph stage, it can be distinguished by the length of the posterolateral projections of abdominal segment IX and the setation of the abdominal terga. Compared to other congeners, nymphs and male imagoes of the new species and share several morphological characteristics, such as a larger body, mesothorax with medially notched anterolateral projections, forefemur without a subapical band of transverse spines of the nymphs, the area between C, Sc and R1 of the forewings distinctly pigmented, and an apical sclerite on the ventral face of the penes of the male imagoes, supporting the proposition of a new species complex, the complex.
View Article and Find Full Text PDFIn the fiber Bragg grating (FBG) sensor network, the signal resolution of the reflected spectrum is correlated with the network's sensing accuracy. The interrogator determines the signal resolution limits, and a coarser resolution results in an enormous uncertainty in sensing measurement. In addition, the multi-peak signals from the FBG sensor network are often overlapped; this increases the complexity of the resolution enhancement task, especially when the signals have a low signal-to-noise ratio (SNR).
View Article and Find Full Text PDFIn quasi-distributed fiber Bragg grating (FBG) sensor networks, challenges are known to arise when signals are highly overlapped and thus hard to separate, giving rise to substantial error in signal demodulation. We propose a multi-peak detection deep learning model based on a dilated convolutional neural network (CNN) that overcomes this problem, achieving extremely low error in signal demodulation even for highly overlapped signals. We show that our FBG demodulation scheme enhances the network multiplexing capability, detection accuracy and detection time of the FBG sensor network, achieving a root-mean-square (RMS) error in peak wavelength determination of < 0.
View Article and Find Full Text PDFIntron detention in precursor RNAs serves to regulate expression of a substantial fraction of genes in eukaryotic genomes. How detained intron (DI) splicing is controlled is poorly understood. Here, we show that a ubiquitous post-translational modification called O-GlcNAc, which is thought to integrate signaling pathways as nutrient conditions fluctuate, controls detained intron splicing.
View Article and Find Full Text PDFReversible glycosylation of nuclear and cytoplasmic proteins is an important regulatory mechanism across metazoans. One enzyme, O-linked N-acetylglucosamine transferase (OGT), is responsible for all nucleocytoplasmic glycosylation and there is a well-known need for potent, cell-permeable inhibitors to interrogate OGT function. Here we report the structure-based evolution of OGT inhibitors culminating in compounds with low nanomolar inhibitory potency and on-target cellular activity.
View Article and Find Full Text PDFA convenient route to convert the highly toxic phosphine (PH) tail gas into high-performance polybenzoxazines was first described in this paper. Two aliphatic polyamines, namely tris(aminomethyl)phosphine oxide and bis(aminomethyl)phenylphosphine oxide, were synthesized from tetrakis(hydroxymethyl)phosphonium sulfate (THPS), a green derivative of PH tail gas. And then two novel phosphorus-containing benzoxazine monomers, tris(3,4-dihydro-2H-1,3-benzoxazin-3-yl-methyl)phosphine oxide (TBOz) and benzylbis(3,4-dihydro-2H-1,3-benzoxazin-3-yl-methyl) phosphine oxide (BBOz) were prepared by three-steps procedure.
View Article and Find Full Text PDFO-GlcNAc transferase (OGT) is an essential mammalian enzyme that regulates numerous cellular processes through the attachment of O-linked N-acetylglucosamine (O-GlcNAc) residues to nuclear and cytoplasmic proteins. Its targets include kinases, phosphatases, transcription factors, histones, and many other intracellular proteins. The biology of O-GlcNAc modification is still not well understood, and cell-permeable inhibitors of OGT are needed both as research tools and for validating OGT as a therapeutic target.
View Article and Find Full Text PDFThe sulphur aroma compounds produced from a phosphate-buffered solution (pH 8) of l-cysteine and l-, l-[1-C] or l-[4-C] ascorbic acid, heated at 140±2°C for 2h, were examined by headspace SPME in combination with GC-MS. MS data indicated that C-1 of l-ascorbic acid was not involved in the formation of sulphur aroma compounds. The sulphur aroma compounds formed by reaction of l-ascorbic acid with l-cysteine mainly contained thiophenes, thiazoles and sulphur-containing alicyclic compounds.
View Article and Find Full Text PDFObjective: To analyse the chemical constituents of volatile oil from Asarum insigne.
Methods: The volatile oil from Asarum insigne was isolated with steam distillation and identified by capillary GC/MS method.
Results: 68 Volatile components were identified and determined, accounting for 92.
Acta Crystallogr Sect E Struct Rep Online
November 2008
In the title compound, C(16)H(13)N(5)O(2)S, the five non-H atoms of the urea linkage adopt a planar configuration owing to the presence of an intra-molecular N-H⋯O hydrogen bond. The maximum deviation from planarity is 0.022 (2) Å.
View Article and Find Full Text PDF