By combining the rigidity of inorganic components with the flexibility of organic components, molecule-based ferroelectrics emerge as promising candidates for flexible, self-powered piezoelectric sensors. While it is well known that the performance of piezoelectric sensor devices depends not only on the materials' piezoelectric properties but also on the device architecture, research into enhancing molecule-based piezoelectric sensor performance through microstructure optimization has never been investigated. Here, we report the synthesis of a molecule-based ferroelectric, [(2-bromoethyl) trimethylammonium][GaBr] ([(CH)NCHCHBr][GaBr]) (1), which exhibits a piezoelectric coefficient ( ) of up to 331 pC N.
View Article and Find Full Text PDFBackground: Available research about the anatomic patterns of intertrochanteric fractures is lacking, and fracture mapping has not previously been performed on intertrochanteric fractures. This study aimed to determine the major trajectories of intertrochanteric fracture lines using computed tomography data from a series of surgically treated patients.
Methods: In this study, 504 patients with intertrochanteric fractures were retrospectively analyzed.
. To investigate the effect of negative pressure conditions induced by NPWT on . .
View Article and Find Full Text PDFPrevious studies of animal models of chronic mechanical compression of the spinal cord have mainly focused on cervical and thoracic lesions, but few studies have investigated thoracolumbar injury. The specific pathophysiological mechanism of chronic thoracolumbar cord injury has not yet been elucidated. The purpose of this study was to improve animal models of chronic thoracolumbar cord compression using the progressive screw.
View Article and Find Full Text PDF