Spiking Neural Network (SNN) is a promising energy-efficient neural architecture when implemented on neuromorphic hardware. The Artificial Neural Network (ANN) to SNN conversion method, which is the most effective SNN training method, has successfully converted moderately deep ANNs to SNNs with satisfactory performance. However, this method requires a large number of time-steps, which hurts the energy efficiency of SNNs.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
September 2018
The heavy-tailed distributions of corrupted outliers and singular values of all channels in low-level vision have proven effective priors for many applications such as background modeling, photometric stereo and image alignment. And they can be well modeled by a hyper-Laplacian. However, the use of such distributions generally leads to challenging non-convex, non-smooth and non-Lipschitz problems, and makes existing algorithms very slow for large-scale applications.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
August 2005
Radar emitter classification is a special application of data clustering for classifying unknown radar emitters from received radar pulse samples. The main challenges of this task are the high dimensionality of radar pulse samples, small sample group size, and closely located radar pulse clusters. In this paper, two new online clustering algorithms are developed for radar emitter classification: One is model-based using the Minimum Description Length (MDL) criterion and the other is based on competitive learning.
View Article and Find Full Text PDFWe consider the problem of training a linear feedforward neural network by using a gradient descent-like LMS learning algorithm. The objective is to find a weight matrix for the network, by repeatedly presenting to it a finite set of examples, so that the sum of the squares of the errors is minimized. Kohonen showed that with a small but fixed learning rate (or stepsize) some subsequences of the weight matrices generated by the algorithm will converge to certain matrices close to the optimal weight matrix.
View Article and Find Full Text PDF