Publications by authors named "Zhi-Qiang Bao"

Charge transport physics in InAs/GaSb bi-layer systems has recently attracted attention for the experimental search for two-dimensional topological superconducting states in solids. Here we report measurement of charge transport spectra of nano devices consisting of an InAs/GaSb quantum well sandwiched by tantalum superconductors. We explore the current-voltage relation as a function of the charge-carrier density in the quantum well controlled by a gate voltage and an external magnetic field.

View Article and Find Full Text PDF

Cd_{3}As_{2} is a three-dimensional topological Dirac semimetal with connected Fermi-arc surface states. It has been suggested that topological superconductivity can be achieved in the nontrivial surface states of topological materials by utilizing the superconductor proximity effect. Here we report observations of both π and 4π periodic supercurrents in aluminum-Cd_{3}As_{2}-aluminum Josephson junctions.

View Article and Find Full Text PDF

A one-dimensional time-reversal-invariant topological superconductor hosts a Majorana Kramers pair at each end, where time-reversal symmetry acts as a supersymmetry that flips local fermion parity. We examine the transport anomaly of such a superconductor, floating and tunnel-coupled to normal leads at its two ends. We demonstrate the realization of a topologically protected, channel-symmetric, two-channel Kondo effect without fine-tuning.

View Article and Find Full Text PDF

We fabricate high-mobility p-type few-layer WSe_{2} field-effect transistors and surprisingly observe a series of quantum Hall (QH) states following an unconventional sequence predominated by odd-integer states under a moderate strength magnetic field. By tilting the magnetic field, we discover Landau level crossing effects at ultralow coincident angles, revealing that the Zeeman energy is about 3 times as large as the cyclotron energy near the valence band top at the Γ valley. This result implies the significant roles played by the exchange interactions in p-type few-layer WSe_{2}, in which itinerant or QH ferromagnetism likely occurs.

View Article and Find Full Text PDF

Exciton superfluid is a macroscopic quantum phenomenon in which large quantities of excitons undergo the Bose-Einstein condensation. Recently, exciton superfluid has been widely studied in various bilayer systems. However, experimental measurements only provide indirect evidence for the existence of exciton superfluid.

View Article and Find Full Text PDF

We construct a theoretical model to study the orbital Kondo effect in a parallel double quantum dot (DQD). Recently, pseudospin-resolved transport spectroscopy of the orbital Kondo effect in a DQD has been experimentally reported. The experiment revealed that when interdot tunneling is ignored, two and one Kondo peaks exist in the conductance-bias curve for pseudospin-non-resolved and pseudospin-resolved cases, respectively.

View Article and Find Full Text PDF

Spin superconductivity is a recently proposed analogue of conventional charge superconductivity, in which spin currents flow without dissipation but charge currents do not. Here we derive a universal framework for describing the properties of a spin superconductor along similar lines to the Ginzburg-Landau equations that describe conventional superconductors, and show that the second of these Ginzburg-Landau-type equations is equivalent to a generalized London equation. Just as the GL equations enabled researchers to explore the behaviour of charge superconductors, our Ginzburg-Landau-type equations enable us to make a number of non-trivial predictions about the potential behaviour of putative spin superconductor.

View Article and Find Full Text PDF