Publications by authors named "Zhi-Liang Tan"

Buffalo exhibits great efficiency in utilizing low-quality roughage, which can be due to the combined effect of host physiological feature and roughage diet fed. The present study was designed to compare the ruminal fiber degradation and the bacterial community attached to straws in buffalo and Holstein when fed with the same high-roughage diet using ruminal incubation technique. Rice and wheat straws were selected as the incubation substrates and sampled at 0, 4, 12, 24, 48, 72, 120, and 216 h of incubation time to measure the kinetics of dry matter (DM) and neutral detergent fiber (NDF) disappearance.

View Article and Find Full Text PDF

Ruminants are important for global food security but emit the greenhouse gas methane. Rumen microorganisms break down complex carbohydrates to produce volatile fatty acids and molecular hydrogen. This hydrogen is mainly converted into methane by archaea, but can also be used by hydrogenotrophic acetogenic and respiratory bacteria to produce useful metabolites.

View Article and Find Full Text PDF

Background: The major greenhouse gas from ruminants is enteric methane (CH) which in 2010, was estimated at 2.1 Gt of CO equivalent, accounting for 4.3% of global anthropogenic greenhouse gas emissions.

View Article and Find Full Text PDF

The dual stress of reduced feed intake and increased milk yield in dairy cows early postpartum results in a negative energy balance. Rumen-protected glucose (RPG) has been reported to replenish energy, increase milk yield, and improve gut health. However, early postpartum cows often develop an insulin resistance, implying that RPG may not be well utilized and increased milk production may increase the liver's fat oxidization burden.

View Article and Find Full Text PDF

rumen batch culture is a technology to simulate rumen fermentation by inoculating microorganisms from rumen fluids. Although inocula (INO) are commonly derived from fresh rumen fluids, frozen rumen fluids are also employed for the advantages of storing, transporting, and preserving rumen microorganisms. The effects of frozen INO on microbial fermentation and community may be interfered with by substrate type, which has not been reported.

View Article and Find Full Text PDF

The physiological function of the reticulorumen plays an essential role in ruminant nutrition, and detailed knowledge of rumen motility can further advance understanding of ruminant nutrition and physiology. Rumen motility was simulated by setting different stirrer rotation speeds in a rumen simulation technique (RUSITEC) system. The aim of this study was to investigate the effects of rotation speeds on rumen fermentation, saturation factor of dissolved gases, hydrogen (H) and methane (CH) emissions, microbial protein synthesis, and selected microbial population using RUSITEC.

View Article and Find Full Text PDF

The individual and combined effects of 3-nitrooxypropanol (3-NOP) and canola oil (OIL) supplementation on enteric methane (CH4) and hydrogen (H2) emissions, rumen fermentation and biohydrogenation, and total tract nutrient digestibility were investigated in beef cattle. Eight beef heifers (mean body weight ± SD, 732 ± 43 kg) with ruminal fistulas were used in a replicated 4 × 4 Latin square with a 2 (with and without 3-NOP) × 2 (with and without OIL) arrangement of treatments and 28-d periods (13 d adaption and 15 d measurements). The four treatments were: control (no 3-NOP, no OIL), 3-NOP (200 mg/kg dry matter [DM]), OIL (50 g/kg DM), and 3-NOP (200 mg/kg DM) plus OIL (50 g/kg DM).

View Article and Find Full Text PDF

Diarrhea and disorders in young goats are serious threats to the animals' health, influencing the profitability of the goat industry. There is a need to better understand the potential biomarkers that can reflect the mortality and morbidity in neonatal diarrhea goats. Ten pairs of twin kid goats from the same does (one healthy and the other diagnosed as diarrhea) with the same age under 14 days after birth were used in this study.

View Article and Find Full Text PDF

QIAamp Fast DNA Stool Mini Kit (QIAGEN, Valencia, CA, United States) and RBB + C (Yu and Morrison, 2004) methodologies are widely employed to extract microbial DNA from rumen samples and can exhibit different efficiencies of obtaining DNA yield, quality, and downstream amplicon sequence analysis. No study has conducted to investigate the contributions of chemical and mechanical lysis on DNA extraction, which included chemical lysis from QIAamp Fast DNA Stool Mini Kit (QIA) and RBB + C (YM), bead (BB), and sand beating (SB). Effects of chemical lysis and bead beating (BB) were investigated by conducting a 2 × 2 factorial-designed experiment with four methodologies, including QIA without (QIA-) and with BB (QIA + BB), and YM without (YM-) and with BB (YM + BB).

View Article and Find Full Text PDF

3-Nitrooxypropanol (3-NOP) is an investigational compound that acts as an enzyme inhibitor to decrease ruminal methanogenesis. We hypothesized that when feeding 3-NOP to cattle fed a high-forage diet, H would accumulate in the rumen, which could suppress microbial colonization of feed particles and fiber degradation. Therefore, the study investigated the effects of supplementing a high-forage diet with 3-NOP on ruminal fiber degradability and microbial colonization of feed particles using the in situ technique.

View Article and Find Full Text PDF

The present study investigated the association between fibre degradation and the concentration of dissolved molecular hydrogen (H2) in the rumen. Napier grass (NG) silage and corn stover (CS) silage were compared as forages with contrasting structures and degradation patterns. In the first experiment, CS silage had greater 48-h DM, neutral-detergent fibre (NDF) and acid-detergent fibre degradation, and total gas and methane (CH4) volumes, and lower 48-h H2 volume than NG silage in 48-h in vitro incubations.

View Article and Find Full Text PDF

Liquid hot water (LHW) treatment can be used to disrupt the fiber structure of rice straw. This in vitro ruminal batch culture study investigated the effect of LHW treatment on feed degradation, methane (CH) production, and microbial populations. Rice straw was treated by LHW, and in vitro ruminal fermentation was performed using an automatic system with 72 h of incubation.

View Article and Find Full Text PDF

Enteric methane (CH4) emissions are not only an important source of greenhouse gases but also a loss of dietary energy in livestock. Corn oil (CO) is rich in unsaturated fatty acid with >50% PUFA, which may enhance ruminal biohydrogenation of unsaturated fatty acids, leading to changes in ruminal H2 metabolism and methanogenesis. The objective of this study was to investigate the effect of CO supplementation of a diet on CH4 emissions, nutrient digestibility, ruminal dissolved gases, fermentation, and microbiota in goats.

View Article and Find Full Text PDF

This study was conducted to investigate the effects of traditional Chinese medicine compounds (TCMC) on rumen fermentation, methane emission and populations of ruminal microbes using an gas production technique. Cablin patchouli herb (CPH), Atractylodes rhizome (AR), Amur Cork-tree (AC) and Cypsum were mixed with the weight ratios of 1:1:1:0.5 and 1:1:1:1 to make up TCMC1 and TCMC2, respectively.

View Article and Find Full Text PDF

Respiration chambers share one analyzer working in parallel, and methane (CH) concentrations have to be measured at certain intervals. The maximum and minimum values in the kinetics of CH emissions can be missed during the interval between measurements, which may influence the quantification of CH emissions. Chambers must be opened for morning feeding and cleaning, which causes a loss of CH data.

View Article and Find Full Text PDF

Hydrogen is a key metabolite that connects microbial fermentation and methanogenesis in the rumen. This study was to investigate the effects of elevated H produced by elemental Mg on rumen fermentation and methanogenesis in dairy cows. Four nonlactating Chinese Holstein dairy cows were employed for this experiment in a replicated crossover design.

View Article and Find Full Text PDF

Rumen cannulation is a widely employed technique in ruminant nutrition research. However, the gap between skin and rumen cannula can cause leakage of fermentation gases and influx of atmospheric air, which may adversely affect the anaerobic environment in the rumen. The present study was designed to investigate the effects of rumen cannulation on headspace gases, dissolved gases, fermentation end products, and methanogen community in the rumen of dairy cows.

View Article and Find Full Text PDF

Generation of ammonia from nitrate reduction is slower compared with urea hydrolysis and may be more efficiently incorporated into ruminal microbial protein. We hypothesized that nitrate supplementation could increase ammonia incorporation into microbial protein in the rumen compared with urea supplementation of a low-protein diet fed to lactating dairy cows. Eight multiparous Chinese Holstein dairy cows were used in a crossover design to investigate the effect of nitrate or an isonitrogenous urea inclusion in the basal low-protein diet on rumen fermentation, milk yield, and ruminal microbial community in dairy cows fed a low-protein diet in comparison with an isonitrogenous urea control.

View Article and Find Full Text PDF

The objective of this study was to investigate differences in fermentation and methanogen communities in samples collected from 3 sites in the rumen of dairy cows. The study involved 3 ruminally cannulated nonlactating Chinese Holstein dairy cows fed a diet of 40% forage and 60% concentrate feeds. Four handfuls of whole ruminal contents were collected from the cranial sac, middle of the ventral sac, and caudodorsal blind sac of the rumen of the cows at 0, 2.

View Article and Find Full Text PDF

Thirty-six Xiangdong black goats were used to investigate age-related mRNA and protein expression levels of some genes related to skeletal muscle structural proteins, MRFs and MEF2 family, and skeletal muscle fiber type and composition during skeletal muscle growth under grazing (G) and barn-fed (BF) feeding systems. Goats were slaughtered at six time points selected to reflect developmental changes of skeletal muscle during nonrumination (days 0, 7, and 14), transition (day 42), and rumination phases (days 56 and 70). It was observed that the number of type IIx in the longissimus dorsi was increased quickly while numbers of type IIa and IIb decreased slightly, indicating that these genes were coordinated during the rapid growth and development stages of skeletal muscle.

View Article and Find Full Text PDF

Background: Different carbohydrates ingested greatly influence rumen fermentation and microbiota and gaseous methane emissions. Dissolved hydrogen concentration is related to rumen fermentation and methane production.

Objectives: We tested the hypothesis that carbohydrates ingested greatly alter the rumen environment in dairy cows, and that dissolved hydrogen concentration is associated with these changes in rumen fermentation and microbiota.

View Article and Find Full Text PDF

Hydrogen (H2) is an essential substrate for methanogens to produce methane (CH4), and also influences pathways of volatile fatty acids (VFA) production in the rumen. Dissolved H2 (H2 (aq)) is the form of H2 available to microbes, and dissolved CH4 (CH4 (aq)) is important for indicating methanogens activity. Rumen H2 (aq) concentration has been estimated by assuming equilibrium with headspace gaseous H2 (H2 (g)) concentration using Henry's law, and has also been directly measured in the liquid phase in some in vitro and in vivo experiments.

View Article and Find Full Text PDF

Methane (CH4 ) can be mitigated through directly inhibiting methanogen activity and starving methanogens by hydrogen (H2 ) sink. Three types of mechanism (i.e.

View Article and Find Full Text PDF

This study was conducted to investigate the accuracy of predicting in vitro ruminal methane (CH4) production using volatile fatty acids (VFA) stoichiometric models [CH4 = 0.5Ace-0.25Pro + 0.

View Article and Find Full Text PDF

Skeletal muscle cells (SMCs) of goats were stress induced with 1 mM H(2)O(2) in the absence or presence of 0.5, 5, and 50 μg/mL tea catechins (TCs) incubation. Cells were harvested at 48 h postincubation with TCs to investigate the effects of TCs on cell proliferation, cell membrane integrity, antioxidant enzyme activities, and antioxidant enzyme genes and protein expression levels.

View Article and Find Full Text PDF