The bioactivity of interferon-γ (IFN-γ) in cancer cells in the tumor microenvironment (TME) is not well understood in the current immunotherapy era. We found that IFN-γ has an immunosuppressive effect on colorectal cancer (CRC) cells. The tumor volume in immunocompetent mice was significantly increased after subcutaneous implantation of murine CRC cells followed by IFN-γ stimulation, and RNA sequencing showed high expression of B7 homologous protein 4 (B7H4) in these tumors.
View Article and Find Full Text PDFCurrently, the market demand of the non-animal-derived cholesterol is increasing. A novel synthetic route of producing cholesterol was developed through multiple reactions from plant-sourced and commercially available bisnoralcohol (BA). The key reaction conditions, including solvents, reaction temperatures, bases and reducing agents of the route were investigated and optimized.
View Article and Find Full Text PDFMicroscopic indications of malignancy and hallmark molecules of cancer are pivotal to determining cancer patient prognosis and subsequent medical intervention. Here, we found that compared to apical expression of Cdc42, which indicated that basal expression of Cdc42 occurred at the migrating cell front, glandular basal expression of Cdc42 (cell division cycle 42) in tissues indicated poorer prognoses for colorectal cancer (CRC) patients. The current study shows that activated Cdc42 was rapidly recruited to the migrating CRC cell front after VEGF stimulation through engagement of membrane-anchored neuropilin-1 (NRP1).
View Article and Find Full Text PDFA hallmark of gastric cancer is the high rate of genomic instability associated with deregulation of DNA damage repair pathways. DNA-Dependent Protein Kinase Catalytic Subunit (PRKDC) is a key component of the non-homologous end-joining (NHEJ) pathway. By reanalyzing transcriptome data of 80 pairs of gastric cancer tumors and the adjacent normal tissues from non-treated patients, we identified PRKDC as the top upregulated DNA damage repair genes in gastric cancer.
View Article and Find Full Text PDFWe have developed a quantum dot-based microRNA nanosensor for point mutation assays using primer generation-mediated rolling circle amplification. The proposed method exhibits high sensitivity with a detection limit of as low as 50.9 aM and a large dynamic range of 7 orders of magnitude from 0.
View Article and Find Full Text PDF