Publications by authors named "Zhi-Jing Song"

The maintenance of intracellular and extracellular adenosine triphosphate (ATP) levels plays a pivotal role in cardiac function. In recent years, burgeoning attention has been directed towards ATP-induced cell death (AICD), revealing it as a distinct cellular demise pathway triggered by heightened extracellular ATP concentrations, distinguishing it from other forms of cell death such as apoptosis and necrosis. AICD is increasingly acknowledged as a critical mechanism mediating the pathogenesis and progression of various cardiovascular maladies, encompassing myocardial ischemia-reperfusion injury, sepsis-induced cardiomyopathy, hypertrophic cardiomyopathy, arrhythmia, and diabetic cardiomyopathy.

View Article and Find Full Text PDF

Background: Breast cancer is a multifaceted and formidable disease with profound public health implications. Cell demise mechanisms play a pivotal role in breast cancer pathogenesis, with ATP-triggered cell death attracting mounting interest for its unique specificity and potential therapeutic pertinence.

Aim: To investigate the impact of ATP-induced cell death (AICD) on breast cancer, enhancing our understanding of its mechanism.

View Article and Find Full Text PDF

Adenosine triphosphate ATP) induced cell death (AICD) is a critical cellular process that has garnered substantial scientific interest for its profound relevance to cancer biology and to therapeutic interventions. This comprehensive review unveils the intricate web of AICD mechanisms and their intricate connections with cancer biology. This review offers a comprehensive framework for comprehending the multifaceted role of AICD in the context of cancer.

View Article and Find Full Text PDF

ATP-induced cell death has emerged as a captivating realm of inquiry with profound ramifications in the context of osteoporosis. This study unveils a paradigm-shifting hypothesis that illuminates the prospective involvement of ATP-induced cellular demise in the etiology of osteoporosis. Initially, we explicate the morphological attributes of ATP-induced cell death and delve into the intricacies of the molecular machinery and regulatory networks governing ATP homeostasis and ATP-induced cell death.

View Article and Find Full Text PDF

Aim: We explored the molecular pathway and material basis of GuBen-ZengGu granules (GBZGG) in treating osteoporosis using network pharmacology and animal experiments.

Methods: The effective active components and potential targets of GBZGG were obtained from the TCMSP database and BATMAN-TCM database. Disease-related genes were obtained from GeneCard, NCBI, and DisGeNET.

View Article and Find Full Text PDF

Aims: Visceral hypersensitivity in irritable bowel syndrome (IBS) is widespread, but effective therapies for it remain elusive. As a canonical anti-inflammatory protein, suppressor of cytokine signaling 3 (SOCS3) reportedly relays exchange protein 1 directly activated by cAMP (Epac1) signaling and inhibits the intracellular response to inflammatory cytokines. Despite the inhibitory effect of SOCS3 on the pro-inflammatory response and neuroinflammation in PVN, the systematic investigation of Epac1-SOCS3 signaling involved in visceral hypersensitivity remains unknown.

View Article and Find Full Text PDF

Visceral hypersensitivity as a common clinical manifestation of irritable bowel syndrome (IBS) may contribute to the development of chronic visceral pain. Our prior studies authenticated that the activation of the corticotropin-releasing factor (CRF) neurons in paraventricular nucleus (PVN) contributed to visceral hypersensitivity in mice, but puzzles still remain with respect to the underlying hyperactivation of corticotropin-releasing factor neurons. Herein, we employed maternal separation (MS) to establish mouse model of visceral hypersensitivity.

View Article and Find Full Text PDF

Background: Long-term morphine use is associated with serious side effects, such as morphine-induced hyperalgesia and analgesic tolerance. Previous investigations have documented the association between dopamine (DA) neurons in the ventral tegmental area (VTA) and pain. However, whether VTA DA neurons are implicated in morphine-induced hyperalgesia and analgesic tolerance remains elusive.

View Article and Find Full Text PDF

Cardiac fibrosis is involved in adverse cardiac remodeling and heart failure, which is the leading cause of deteriorated cardiac function. Accumulative evidence has elucidated that microRNAs (miRNAs) play important roles in the pathogenesis of cardiac fibrosis. However, the exact molecular mechanism underlying miR-144 in cardiac fibrosis remains unknown.

View Article and Find Full Text PDF

Ample evidence suggests that early life stress (ELS) is a high-risk factor for the development of visceral pain disorders, whereas the mechanism underlying neuronal circuit remains elusive. Herein, we employed neonatal colorectal distension (CRD) to induce visceral hypersensitivity in rats. A combination of electrophysiology, pharmacology, behavioral test, molecular biology, chemogenetics and optogenetics confirmed that CRD in neonatal rats could predispose the elevated firing frequency of the parvocellular corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus of hypothalamus (PVN) in adulthood, with the CRH neurons activated and the frequency of spontaneous inhibitory postsynaptic currents (sIPSC) diminished, both contributing to chronic visceral hypersensitivity.

View Article and Find Full Text PDF

Objective: To test the effects of Guben Zenggu Decoction on bone metabolism and bone microstructure in ovariectomized rats for the purpose of preventing and treating postmenopausal osteoporosis.

Methods: Osteoporosis rat models were established by ovariectomy. The model rats were randomly divided into control, estradiol valerate treatment, and Guben Zenggu Decoction treatment groups with high, medium and low dosages.

View Article and Find Full Text PDF

Purpose: Preventing opioid-induced hyperalgesia and tolerance continues to be a major clinical challenge, and the underlying mechanisms of hyperalgesia and tolerance remain elusive. Here, we investigated the role of sonic hedgehog (Shh) signaling in opioid-induced hyperalgesia and tolerance.

Methods: Shh signaling expression, behavioral changes, and neurochemical alterations induced by morphine were analyzed in male adult CD-1 mice with repeated administration of morphine.

View Article and Find Full Text PDF

Treating bone cancer pain continues to be a clinical challenge and underlying mechanisms of bone cancer pain remain elusive. Here, we reported that sonic hedgehog signaling plays a critical role in the development of bone cancer pain. Tibia bone cavity tumor cell implantation produces bone cancer-related mechanical allodynia, thermal hyperalgesia, and spontaneous and movement-evoked pain behaviors.

View Article and Find Full Text PDF

Background: Birch pollen sensitization and associated pollen-food syndrome among Chinese allergic patients have not been investigated.

Methods: Sera from 203 allergic patients from the northern part of China and collected during February to July 2014 were investigated. Specific immunoglobulin E (IgE) against birch pollen extract Bet v and major birch pollen allergen Bet v 1 were measured using the ADVIA Centaur.

View Article and Find Full Text PDF

Objective: Weed pollens are common sources of allergens worldwide. The prevalence of weed pollen sensitization is not yet fully known in China. The purpose of this study was to investigate the prevalence of sensitization to weed allergens from Artemisia, Ambrosia, and Humulus in northern China.

View Article and Find Full Text PDF