Manipulating building-block nanomaterials to form an ordered superstructure in a dilute and spacer-free solution phase challenges the existing 5-nm node lithography and nanorobotics. The cooperative nature of nanocrystals, polymers, and cells can lead to superarrays or colloidal crystals. For known highly ordered systems, the characteristic length of materials, defined as the shortest dimension of objects, is generally larger than their separations.
View Article and Find Full Text PDFThe properties of (synthesized) single-walled aluminosilicate nanotube (AlSiNT; light-scattering characterized length ∼2000 ± 230 nm and diameter ∼35 ± 4 nm) dispersed in an aqueous poly(vinyl alcohol) (PVA) solution (10 wt %) are systematically explored using a comprehensive combination of (polarized/depolarized) dynamic light scattering, rheological, rheo-optical, and scanning electron microscopy analysis schemes. The nanotube/polymer dispersions under investigation are promising for their fair nanotube dispersion in pristine aqueous media (e.g.
View Article and Find Full Text PDF