Publications by authors named "Zhi-Hong Xuan"

Organic donor-acceptor systems have attracted much attention due to their various potential applications. However, the rational construction and modulation of highly ordered donor-acceptor systems could be a challenge due to the complicated self-assembly process of donor and acceptor species. Considering the well-defined arrangement of species at the molecule level, a crystalline host-guest system could be an ideal platform for the rational construction of donor-acceptor systems.

View Article and Find Full Text PDF

Two new zinc MOFs with similar "pillar-layered" framework structures based on 1,1'-biphenyl-2,2',6,6'-tetracarboxylic acid (H4bpta) and two different bipyridine pillar ligands, namely {[Zn4(bpta)2(4-pna)2(H2O)2]·4DMF·3H2O}n (1) and {[Zn2(bpta)(bpy-ea)(H2O)]·2DMF·H2O}n (2) (4-pna = N-(4-pyridyl)isonicotinamide and bpy-ea = 1,2-bis(4-pyridyl)ethane), have been synthesized and investigated with their CO2 adsorption properties. By analysis of the structure properties and the CO2 adsorption performances of these two MOFs, it was found that the introduction of polar acylamide groups via 4-pna resulted in 1 with enhanced CO2 capacity and CO2/CH4 selectivity at low pressure. In contrast, the framework of 2 shows flexible properties originating from the flexibility of the ethanediylidene group in the bpy-ea ligand, which benefits the sieve effect of pores to give higher CO2/CH4 selectivity at a relatively high pressure range.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists created a new type of metal-organic frameworks (MOFs) by adding special molecules to them.
  • They tested how well these new MOFs could hold gases like hydrogen (H2) and carbon dioxide (CO2) at different pressures and found that adding fluorine made them even better.
  • One specific MOF, called TKL-107, was used to make special membranes that can help separate CO2, which is really useful for cleaning the air.
View Article and Find Full Text PDF