Publications by authors named "Zhi-Fang Lin"

Article Synopsis
  • - The study aims to analyze the diagnosis process of two patients with unique thalassemia genotypes, focusing on why some cases may be missed or misdiagnosed, to enhance detection methods for rare thalassemia types.
  • - Researchers used family history, blood tests, and advanced DNA sequencing techniques to identify these uncommon genetic combinations, noting that both combinations were reported for the first time.
  • - The findings contribute to a better understanding of genetic mutations in thalassemia among the Chinese population, offering valuable data for diagnosing and counseling on this condition.
View Article and Find Full Text PDF

We demonstrated that non-reciprocal wave propagation could be manipulated by a magnetic rod chain under bias DC magnetic fields. Made of ferrite material YIG and designed working in the microwave X-band, the rod chain exhibited almost a total reflection when the incident wave obliquely impinged on the rod chain, but exhibited nearly a total transmission when the wave reversed its propagation direction. The non-reciprocal wave propagation was due to the non-reciprocal diffraction of the rod chain for the orders 0 and ± 1.

View Article and Find Full Text PDF

We experimentally demonstrate a broadband one-way transmission by merging the operating bands of two types of one-way edge modes that are associated with Bragg scattering and magnetic surface plasmon (MSP) resonance, respectively. By tuning the configuration of gyromagnetic photonic crystals and applied bias magnetic field, the fused bandwidth of unidirectional propagation is up to 2 GHz in microwave frequency range, much larger than either of the individual one-way bandwidth associated with Bragg scattering or MSP resonance. Our scheme for broadband one-way transmission paves the way for the practical applications of one-way transmission.

View Article and Find Full Text PDF

Alocasia macrorrhiza is a fast growing and propagating herbaceous species commonly found in South China. To determine its physiological responses to Pb and Cd stresses, the biochemical, histochemical and cytochemical changes under PbAC2 and CdCl2 phytotoxicity were detected using leaf discs as an experimental model. After leaf discs were infiltrated in different concentrations of PbAC2 and CdCl2 solutions (0, 50, 100, 150, 200 microM) for 72 h, the formation of reactive oxygen species (H2O2 and O2-) in plant tissue were found to be exaggerated together with elevated OH concentration and cell death.

View Article and Find Full Text PDF

The effects of long-term (33 months) sun/shade acclimation and short-term (within 10 h) HSO(3) (-) treatment on leaf photosynthetic apparatus were investigated in three subtropical forest plants, Pinus massoniana, Schima superba, and Acmena acuminatissima. After 33 months' growth in two light environments (100 and 12% sunlight), rapid light curves (RLC), chlorophyll fluorescence imaging and chloroplast ultrastructures of three tested species were changed to different degrees. When leaf sections were immersed in 50 mM NaHSO(3) for 10 h, all the RLCs were lowered; chlorophyll fluorescence imaging was inclined to present warmer colors and imaging areas were decreased.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated the effect of photooxidation stress on chlorophyll fluorescence and antioxidative capabilities in wild-type and mutant Arabidopsis thaliana, particularly focusing on anthocyanin-deficient mutants.
  • Results showed that the anthocyanin mutants (tt3, tt4, and tt3tt4) had lower antioxidative capabilities and increased cell membrane leakiness compared to the wild-type under stress conditions.
  • The mutants displayed varying levels of sensitivity to photooxidation, with the sequence being tt3tt4 > tt4 > tt3 > wild-type, highlighting the protective role of anthocyanins against oxidative damage to the photosynthetic apparatus.
View Article and Find Full Text PDF

The value of intrinsic chlorophyll fluorescence polarization, and the intensity in emission spectrum were investigated in leaf segments of Alocasia macrorrhiza under several stress conditions including different temperatures (25-50 degrees C), various concentrations of NaCl (0-250 mM), methyl viologen (MV, 0-25 microM), SDS (0-1.0%) and NaHSO(3) (0-80 microM). Fluorescence emission spectrum of leaves at wavelength regions of 500-800 nm was monitored by excitation at 436 nm.

View Article and Find Full Text PDF

In the present study, both electron spin resonance (ESR) and chemical detection confirmed that lutein [extracted from alfalfa (Medicago sativa L.)], the most abundant xanthophyll in thylakoids of chloroplasts, could serve as an antioxidant to scavenge reactive oxygen species (ROS) in vitro. Lutein exhibited a greater capacity for scavenging hydroxyl (OH) and superoxide (O) radicals than β-carotene at the same concentration, whereas the opposite trend was observed in the capacity for scavenging singlet oxygen (O).

View Article and Find Full Text PDF

The surface stress on the real shape (biconcave disklike) of an erythrocyte under laser irradiation is theoretically studied according to the finite-difference time-domain (FDTD) method. The distribution of the surface stresses depends on the orientation of erythrocytes in the laser beam. Typically when the erythrocyte was irradiated from the side direction (the laser beam was perpendicular to the normal of the erythrocyte plane), the surface stresses were so asymmetrical and nonuniform that the magnitude of the surface stress on the back surface was three times higher than that on the front surface, and the highest-to-lowest ratio of the stress reached 16 times.

View Article and Find Full Text PDF

An improved lattice Boltzmann model is developed to simulate fluid flow with nearly constant fluid density. The ingredient is to incorporate an extra relaxation for fluid density, which is realized by introducing a feedback equation in the equilibrium distribution functions. The pressure is dominated by the moving particles at a node, while the fluid density is kept nearly constant and explicit mass conservation is retained as well.

View Article and Find Full Text PDF

Leaf carbon isotope ratios and leaf mineral composition (Ca, K, Mg, Mn, N, and P) were measured on the dominant species along an irradiance cline in a subtropical monsoon forest of southern China. This irradiance cline resulted from disturbance caused by fuel-harvesting. Leaf carbon isotope ratios increased from undisturbed to disturbed sites for all species, indicating that leaf intercellular CO concentrations decreased and leaf water use efficiencies increased along this cline.

View Article and Find Full Text PDF