While microRNAs (miRs) like miR-9 are crucial for neurogenesis and neuronal differentiation, their regulatory mechanisms are not well understood. miR-9 is highly expressed in the brain and plays a significant role in neurogenesis. Using the Collaborative Cross resource, we identified significant quantitative trait loci (QTL) through genetic analyses.
View Article and Find Full Text PDFIntroduction: Nav1.6 is closely related to the pathology of Alzheimer's Disease (AD), and astrocytes have recently been identified as a significant source of β-amyloid (Aβ). However, little is known about the connection between Nav1.
View Article and Find Full Text PDFChanges in telomerase activity and telomere length contribute to aging-related decline. Investigating telomerase in aging models provides insights into related pathologies. Here, we present a protocol to detect telomerase activity in adult mouse hippocampal neural progenitor cells using the telomeric repeat amplification protocol assay.
View Article and Find Full Text PDFObjectives: As a novel imaging marker, pericoronary fat attenuation index (FAI) reflects the local coronary inflammation which is one of the major mechanisms for in-stent restenosis (ISR). We aimed to validate the ability of pericoronary FAI to predict ISR in patients undergoing percutaneous coronary intervention (PCI).
Materials And Methods: Patients who underwent coronary CT angiography (CCTA) before PCI within 1 week between January 2017 and December 2019 at our hospital and had follow-up invasive coronary angiography (ICA) or CCTA were enrolled.
Background Lipid-rich plaques detected with intravascular imaging are associated with adverse cardiovascular events in patients with non-ST-segment elevation (NSTE) acute coronary syndrome (ACS). But evidence about the prognostic implication of coronary CT angiography (CCTA) in NSTE ACS is limited. Purpose To assess whether quantitative variables at CCTA that reflect lipid content in nonrevascularized plaques in individuals with NSTE ACS might be predictors of subsequent nonrevascularized plaque-related major adverse cardiovascular events (MACEs).
View Article and Find Full Text PDFIn recent years, brain diseases have seriously threatened human health due to their high morbidity and mortality. Achieving efficient drug delivery to provide satisfactory therapeutic outcomes is currently the greatest challenge in treating brain diseases. The main challenges are the structural peculiarities of the brain and the inability to transport drugs across the blood-brain barrier.
View Article and Find Full Text PDFCerebral ischemia/reperfusion (I/R) injury is a complex pathophysiological process that can lead to neurological function damage and the formation of cerebral infarction. The p38 MAPK pathway has attracted considerable attention in cerebral I/R injury (IRI), but little research has been carried out on its direct role in vivo. In this study, to observe the effects of p38 MAPK endogenous inhibition on cerebral IRI, p38 heterozygous knockdown (p38) mice were used.
View Article and Find Full Text PDFAberrant increases in neuronal network excitability may contribute to cognitive deficits in Alzheimer's disease (AD). However, the mechanisms underlying hyperexcitability of neurons are not fully understood. Voltage-gated sodium channels (VGSC or Nav), which are involved in the formation of excitable cell's action potential and can directly influence the excitability of neural networks, have been implicated in AD-related abnormal neuronal hyperactivity and higher incidence of spontaneous non-convulsive seizures.
View Article and Find Full Text PDFExcitatory-inhibitory imbalance (E/I) is a fundamental mechanism underlying autism spectrum disorders (ASD). TRIM32 is a risk gene genetically associated with ASD. The absence of TRIM32 causes impaired generation of inhibitory GABAergic interneurons, neural network hyperexcitability, and autism-like behavior in mice, emphasizing the role of TRIM32 in maintaining E/I balance, but despite the description of TRIM32 in regulating proliferation and differentiation of cultured mouse neural progenitor cells (NPCs), the role of TRIM32 in cerebral cortical development, particularly in the production of excitatory pyramidal neurons, remains unknown.
View Article and Find Full Text PDFCytochrome c oxidase subunit Va (COX5A) is involved in maintaining normal mitochondrial function. However, little is known on the role of COX5A in the development and progress of Alzheimer's disease (Martinez-Losa et al., 2018).
View Article and Find Full Text PDFFood Chem Toxicol
October 2020
Ursolic acid (UA) is a pentacyclic triterpenoid and has the characteristics to serve as a potential therapeutic agent for a range of disorders. However, detailed studies of the toxicity of UA, especially developmental toxicity of UA, are non-existing. The objective of this study was to determine the potential effects of UA on fetal development, adult reproductive system, and major organs.
View Article and Find Full Text PDFBackground: Ursolic acid (UA) has been used in alternative medicine for decades, and there has been a great interest in its medicinal properties. Despite this increased interest, a detailed long-term toxicity study has not been performed. The objective of this study was to determine the long-term toxic effect of UA on clinical chemistry, haematology, coagulation, pathology/morphology, behaviour and motor skills in rats.
View Article and Find Full Text PDFMammalian target of rapamycin (mTOR) signaling plays essential roles in brain development. Hyperactive mTOR is an essential pathological mechanism in autism spectrum disorder (ASD). Here, we show that tripartite motif protein 32 (TRIM32), as a maintainer of mTOR activity through promoting the proteasomal degradation of G protein signaling protein 10 (RGS10), regulates the proliferation of medial/lateral ganglionic eminence (M/LGE) progenitors.
View Article and Find Full Text PDFRationale And Objective: Paeoniflorin has been reported to exhibit antidepressant-like effects in several animal model depression; and it also exerts a neuroprotective effect. In the present study, we investigated the effects of paeoniflorin administration on depression-like behaviors and cognitive abilities in mice subjected to chronic unpredictable mild stress (CUMS), an animal model associated with depressive disorders and cognitive deficits.
Methods: We administered paeoniflorin (20 mg/kg), which is the main active constituent extracted from Paeonia lactiflora Pall.
Cerebral ischemic stroke is one of the leading causes of death and disability worldwide, and the only available drug treatment is limited to a short window following the ischemic event. Gastrodin is the major bioactive constituent extracted from thetuberGastrodia elata, and is currently used to treat dizziness in the clinic. "Early" application of gastrodin (before modeling or immediately after ischemic injury) has shown antioxidative and neuroprotective effects in a transient focal brain ischemia model in rodents; however, it is not known whether the delayed administration of gastrodin after permanent focal cerebral ischemia ameliorates neural injury and increases neurogenesis.
View Article and Find Full Text PDFIntroduction: CNTN6 is an immunoglobulin domain-containing cell adhesion molecule that belongs to the contactin family. It is involved in the development of the nervous system. We aim to determine the effect of Cntn6 deficiency on the allocentric navigation in mice.
View Article and Find Full Text PDFNeurogenesis correlates closely with the recovery of neural function after brain ischemia but the critical proteins and signaling pathways involved remain unclear. The phosphatase WIP1 has been shown to regulate neurogenesis in models of aging. However, it is not known if WIP1 affects neurogenesis and functional recovery after brain ischemia.
View Article and Find Full Text PDFVoltage-gated sodium channels beta 2 (Navβ2, encoded by SCN2B) is a substrate of β-site amyloid precursor protein cleaving enzyme 1 (BACE1) and regulates cell surface expression of channels in neurons. Previous studies reported enhanced Navβ2 processing by BACE1 in Alzheimer's disease (AD) model and patients. We investigated whether changes in Navβ2 expression affect neuronal seizure and amyloid precursor protein (APP) processing in an AD mouse model.
View Article and Find Full Text PDFAxonal injury is a common feature of central nervous system insults. Upregulation of amyloid precursor protein (APP) is observed following central nervous system neurotrauma and is regarded as a marker of central nervous system axonal injury. However, the underlying mechanism by which APP mediates neuronal death remains to be elucidated.
View Article and Find Full Text PDFAmyloid precursor protein (APP), commonly associated with Alzheimer's disease, also marks axonal degeneration. In the recent studies, we demonstrated that APP aggregated at nodes of Ranvier (NORs) in myelinated central nervous system (CNS) axons and interacted with Nav1.6.
View Article and Find Full Text PDFThe PP2C family member Wild-type p53-induced phosphatase 1 (Wip1) critically regulates DNA damage response (DDR) under stressful situations. In the present study, we investigated whether Wip1 expression was involved in the regulation of DDR-induced and depression-related cellular senescence in mouse hippocampus. We found that Wip1 gene knockout (KO) mice showed aberrant elevation of hippocampal cellular senescence and of γ-H2AX activity, which is known as a biomarker of DDR and cellular senescence, indicating that the lack of Wip1-mediated γ-H2AX dephosphorylation facilitates cellular senescence in hippocampus.
View Article and Find Full Text PDFThe pathogenesis of hypertension-related cognitive impairment has not been sufficiently clarified, new molecular targets are needed. p38 MAPK pathway plays an important role in hypertensive target organ damage. Activated p38 MAPK was seen in AD brain tissue.
View Article and Find Full Text PDFSynaptic plasticity is an important mechanism that underlies learning and cognition. Protein phosphorylation by kinases and dephosphorylation by phosphatases play critical roles in the activity-dependent alteration of synaptic plasticity. In this study, we report that Wip1, a protein phosphatase, is essential for long-term potentiation (LTP) and long-term depression (LTD) processes.
View Article and Find Full Text PDFAberrant increases in neuronal network excitability may contribute to the cognitive deficits in Alzheimer's disease (AD). However, the mechanisms underlying hyperexcitability are not fully understood. Such overexcitation of neuronal networks has been detected in the brains of APP/PS1 mice.
View Article and Find Full Text PDFScutellarin, a flavonoid extracted from an herbal medication (Erigeron breviscapus Hand-Mazz), has been shown to protect neurons against damage and to promote neurogenesis, and thus has therapeutic potential in the treatment of a variety of neurodegenerative diseases. Since neural stem cells (NSCs) could differentiate into myelin-producing oligodendrocytes, we speculate that scutellarin could also be used to treat multiple sclerosis (MS). In the current study, we examined potential effects of scutellarin using a mouse model of MS.
View Article and Find Full Text PDF