Publications by authors named "Zhi Ting Ye"

The light distribution of light-emitting diodes (LEDs) generally resembles that of a Lambertian light source. When used as large-area light sources, the light distribution angle of LEDs must be modified through secondary optics design to achieve uniformity and minimize the number of light sources. However, secondary optical components pose several challenges such as demanding alignment accuracy, material aging, detachment, and lower reliability.

View Article and Find Full Text PDF

Ultraviolet B light-emitting diodes (UVB LEDs) hold promise in medical and agricultural applications. The commonly used sapphire substrate for their epitaxy growth possesses a high refractive index and excellent UV light absorption characteristics. However, this high refractive index can induce total internal reflection (TIR) within the substrate, leading to decreased Light Extraction Efficiency (LEE) due to light absorption within the material.

View Article and Find Full Text PDF

In recent years, the demand for outdoor advertising and industrial display applications has been steadily increasing. Outdoor environments require higher brightness levels, thus requiring a reduction in the thermal resistance of the light source package. However, using secondary optical lenses to decrease the number of light sources is not a suitable solution because it may lead to the issue of lens detachment.

View Article and Find Full Text PDF

Because the human eye cannot visually detect the results of direct bilirubin test papers accurately and quantitatively, this study proposes four different highly collimated mini light-emitting diodes (HC mini-LEDs) as light sources for detection. First, different concentrations of bilirubin were oxidized to biliverdin by FeCl on the test paper, and pictures were obtained with a smartphone. Next, the red, green, and blue (RGB) channels of the pictures were separated to average grayscale values, and their linear relationship with the direct bilirubin concentration was analyzed to detect bilirubin on the test paper noninvasively and quantitatively.

View Article and Find Full Text PDF

Mini-light-emitting diode (Mini-LED) backlight units (BLUs) in combination with high dynamic range technology can reduce energy and ensure high contrast and luminance. However, the number of LEDs used in mini-LED BLUs is considerably larger than the number of partitions in local dimming, resulting in low cost effectiveness. We proposed a design combining edge-light mini-LEDs and light-guiding microstructure lenses to reduce the number of light sources required in displays considerably.

View Article and Find Full Text PDF

The colorimetric detection of glucose typically involves a peroxidase reaction producing a color, which is then recorded and analyzed. However, enzyme detection has difficulties with purification and storage. In addition, replacing enzyme detection with chemical methods involves time-consuming steps such as centrifugation and purification and the optical instruments used for colorimetric detection are often bulky and not portable.

View Article and Find Full Text PDF

Urine test paper is a standard, noninvasive detection method for direct bilirubin, but this method can only achieve qualitative analysis and cannot achieve quantitative analysis. This study used Mini-LEDs as the light source, and direct bilirubin was oxidized to biliverdin by an enzymatic method with ferric chloride (FeCl) for labeling. Images were captured with a smartphone and evaluated for red (R), green (G), and blue (B) colors to analyze the linear relationship between the spectral change of the test paper image and the direct bilirubin concentration.

View Article and Find Full Text PDF

This study developed a miniaturized optomechanical device (MOD) for the feasibility study of direct bilirubin in urine using high-collimation blue mini-light-emitting diodes (Mini-LEDs) as the light source. The constructed MOD used optical spectroscopy to analyze different concentrations of direct bilirubin using the absorbance spectrum to achieve a noninvasive method for detection. The experimental results showed that between the absorbance and different concentrations of direct bilirubin at the blue Mini-LEDs central wavelength (462 nm) was the optimum fitting wavelength; in the direct bilirubin concentration range from 0.

View Article and Find Full Text PDF

This report outlines a proposed method of packaging wide-angle (WA) mini-light-emitting diode (mini-LED) devices without optical lenses to create a highly efficient, ultrathin, flexible planar backlight for portable quantum dot light-emitting diode (QLED) displays. Since the luminous intensity curve for mini-LEDs generally recommends a beam angle of 120°, numerous LEDs are necessary to achieve a uniform surface light source for a QLED backlight. The light-guide layer and diffusion layer were packaged together on a chip surface to create WA mini-LEDs with a viewing angle of 180°.

View Article and Find Full Text PDF

We propose the use of optical films to enhance the light extraction efficiency (LEE) and wide-angle emission of traditional packaged deep-ultraviolet light-emitting diodes (DUV-LEDs). Total internal reflection occurs easily in DUV-LEDs because they contain sapphire, which has a high refractive index. DUV-LEDs also contain an aluminum nitride (AlN) ceramic substrate, which has high light absorption in the ultraviolet band.

View Article and Find Full Text PDF

The demand for extra-thin, large-area, and high-luminance flat-panel displays continues to grow, especially for portable displays such as gaming laptops and automotive displays. In this paper, we propose a design that includes a light guide layer with a microstructure above the mini-light-emitting diode light board. The light control microstructure of concave parabel-surface microlens arrays on a light-emitting surface increases the likelihood of total internal reflection occurring and improved the uniformity merit function.

View Article and Find Full Text PDF

A common full-color method involves combining micro-light-emitting diodes (LEDs) chips with color conversion materials such as quantum dots (QDs) to achieve full color. However, during color conversion between micro-LEDs and QDs, QDs cannot completely absorb incident wavelengths cause the emission wavelengths that including incident wavelengths and converted wavelength through QDs, which compromises color purity. The present paper proposes the use of a recycling-reflection color-purity-enhancement film (RCPEF) to reflect the incident wavelength multiple times and, consequently, prevent wavelength mixing after QDs conversion.

View Article and Find Full Text PDF

Displays composed of micro-light-emitting diodes (micro-LEDs) are regarded as promising next-generation self-luminous screens and have advantages such as high contrast, high brightness, and high color purity. The luminescence of such a display is similar to that of a Lambertian light source. However, owing to reduction in the light source area, traditional secondary optical lenses are not suitable for adjusting the light field types of micro-LEDs and cause problems that limit the application areas.

View Article and Find Full Text PDF

Mini-light-emitting diodes (mini-LEDs) were combined with multiple three-dimensional (3D) diffuse reflection cavity arrays (DRCAs) to produce thin, large-area, high-brightness, flat light source modules. The curvature of the 3D free-form DRCA was optimized to control its light path; this increased the distance between light sources and reduced the number of light sources used. Experiments with a 12.

View Article and Find Full Text PDF

Consider material machinability and lattice mismatch sapphire as substrates for the ultraviolet-C light-emitting diodes (UV-C LEDs) are commonly used, but their high refractive index can result in the total internal reflection (TIR) of light whereby some light is absorbed, therefore caused reducing light extraction efficiency (LEE). In this study, we propose a method to optimize the thickness of a sapphire substrate light guide layer through first-order optical design which used the optical simulation software Ansys SPEOS to simulate and evaluate the light extraction efficiency. AlGaN UV-C LEDs wafers with a light guide layer thickness of 150-700 μm were used.

View Article and Find Full Text PDF

This paper proposes a new encapsulation structure for aluminum nitride-based deep UV light-emitting diodes (DUV-LEDs) and eutectic flip chips containing polydimethylsiloxane (PDMS) fluid doped with SiO nanoparticles (NPs) with a UV-transparent quartz hemispherical glass cover. Experimental results reveal that the proposed encapsulation structure has considerably higher light output power than the traditional one. The light extraction efficiency was increased by 66.

View Article and Find Full Text PDF

This study proposes a novel direct-lit mini-chip-scale packaged light-emitting diode (mini-CSPLED) backlight unit (BLU) that used quantum dot (QD) film, diffusion plate, and two prism films to improve brightness uniformity. Three different luminous intensity units, 120° mini-CSPLED, 150° mini-CSPLED, and 180° mini-CSPLED with different emission angle structures were fabricated using a CSP process. In terms of component characteristics, although the 180° mini-CSPLED light output power is about loss 4% (at 10 mA) compared with 150° mini-CSPLED, it has a large emission angle that forms a planar light source that contributes to improving the BLU brightness uniformity and reduced quantity of LEDs at the same area.

View Article and Find Full Text PDF

A novel combination of blue LED chips, transparent glass substrates and phosphors with PDMS thin film is demonstrated. The flip-chip bonding technology is applied to facilitate this design. The ZrO(2) nanoparticles are also doped into the PDMS film to increase light scattering.

View Article and Find Full Text PDF

The penetration of LED light bulbs into the lighting market is growing quickly in recent years due to significant increase of LED efficiency and reduction of cost. One major issue to be improved is the overall light bulb efficiency, which can fulfill "Energy Star for Lamps" while keeping sufficiently high efficiency. The efficiency issue results mainly from the high directionality of the LED sources and the corresponding solutions to make the emission more diverse.

View Article and Find Full Text PDF

Light guides have been widely used for transforming line sources into planar illuminators for lighting and display applications. Solid light guides provide good uniformity but still have the issues of heavy weight and material absorption, especially for large applications. Hollow light guides solve the problem of weight, but the uniformity is relatively poor or efficiency could be sacrificed for enhancing uniformity.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: