To date, developing crystalline proton-conductive metal-organic frameworks (MOFs) with an inherent excellent proton-conducting ability and structural stability has been a critical priority in addressing the technologies required for sustainable development and energy storage. Bearing this in mind, a multifunctional organic ligand, 3,4-dimethylthiophene[2,3-]thiophene-2,5-dicarboxylic acid (HDTD), was employed to generate two exceptionally stable three-dimensional porous Zr/Hf MOFs, [ZrO(OH)(DTD)]·5DMF·HO () and [HfO(OH)(DTD)]·4DMF·HO ), using solvothermal means. The presence of Zr or Hf nodes, strong Zr/Hf-O bonds, the electrical influence of the methyl group, and the steric effect of the thiophene unit all contribute to their structural stability throughout a wide pH range as well as in water.
View Article and Find Full Text PDFAlthough crystalline metal-organic frameworks (MOFs) have gained a great deal of interest in the field of proton conduction in recent years, the low stability and poor proton conductivity (σ) of some MOFs have hindered their future applications. As a result, resolving the issues listed above must be prioritized. Due to their exceptional structural stability, MOFs with ferrocene groups that exhibit particular physical and chemical properties have drawn a lot of attention.
View Article and Find Full Text PDFJ Colloid Interface Sci
July 2024
The achievement of covalent organic frameworks (COFs) with high stability and exceptional proton conductivity is of tremendous practical importance and challenge. Given this, we hope to prepare the highly stable COFs carrying CN connectors and enhance their proton conductivity via a post-modification approach. Herein, one COF, TpTta, was successfully synthesized by employing 1,3,5-triformylphloroglucinol (Tp) and 4,4',4″-(1,3,5-triazine-2,4,6-triyl)-trianiline (Tta) as starting materials, which has a β-ketoenamine structure bearing a large amount of -NH groups and intramolecular H-bonds.
View Article and Find Full Text PDFCurrently, it is still a challenge to directly achieve highly stable metal-organic frameworks (MOFs) with superior proton conductivity solely through the exquisite design of ligands and the attentive selection of metal nodes. Inspired by this, we are intrigued by a multifunctional dicarboxylate ligand including dithiophene groups, 3,4-dimethylthieno[2,3-]thiophene-2,5-dicarboxylic acid (HDTD), and lanthanide ions with distinct coordination topologies. Successfully, four isostructural three-dimensional lanthanide(III)-based MOFs, [Ln(DTD)(DEF)]·DEF·6HO [Ln = Tb (), Eu (), Sm (), and Dy ()], were solvothermally prepared, in which the effective proton transport will be provided by the coordinated or free solvent molecules, the crystalline water molecules, and the framework components, as well as a large number of highly electronegative S and O atoms.
View Article and Find Full Text PDFTwo-dimensional (2D) van der Waals (vdW) materials have garnered considerable attention for their unique properties and potentials in a wide range of fields, which include nano-electronics/optoelectronics, solar energy, and catalysis. Meanwhile, challenges in the approaches toward achieving high-performance devices still inspire the search for new 2D vdW materials with precious properties. In this study, via molecular beam epitaxy, for the first time, the vdW SnI monolayer is successfully fabricated with a new structure.
View Article and Find Full Text PDFPuckered honeycomb Sb monolayer, the structural analog of black phosphorene, has been recently successfully grown by means of molecular beam epitaxy. However, little is known to date about the growth mechanism for such a puckered honeycomb monolayer. In this study, by using scanning tunneling microscopy in combination with first-principles density functional theory calculations, we unveil that the puckered honeycomb Sb monolayer takes a kinetics-limited two-step growth mode.
View Article and Find Full Text PDFThe interfacial charge transfer from the substrate may influence the electronic structure of the epitaxial van der Waals (vdW) monolayers and, thus, their further technological applications. For instance, the freestanding Sb monolayer in the puckered honeycomb phase (α-antimonene), the structural analogue of black phosphorene, was predicted to be a semiconductor, but the epitaxial one behaves as a gapless semimetal when grown on the -WTe substrate. Here, we demonstrate that interface engineering can be applied to tune the interfacial charge transfer and, thus, the electron band of the epitaxial monolayer.
View Article and Find Full Text PDFLuminescent metal-organic frameworks (LMOFs), as one branch of MOFs, have attracted considerable attention in recent years due to their good crystallinity, structural diversity, tunable porosity and easily induced fluorescence emission. Importantly, their photoluminescence (PL) properties can be adjusted by altering metal ions or metal clusters and organic ligands in one hybrid system. Among the various sensing applications, using LMOFs as chemical sensors to detect the explosive and environment pollution causing nitroaromatic compounds (NACs) is an important topic.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
June 2020
Taking advantage of V-shaped ligands, a Zn metallocryptand, namely {[Zn(didp)(m-bdc)]}, (1) [didp = 2,8-di(1H-imidazol-1-yl)-dibenzothiophene and m-Hbdc = isophthalic acid], has been hydrothermally synthesized. Single-crystal X-ray diffraction analysis reveals a 26-membered butterfly-type metallomacrocycle [Zn(didp)]. One m-bdc ligand bridges [Zn(didp)] units to form a laterally non-symmetric [Zn(didp)(m-bdc)] metallocryptand with an exo-exo conformation.
View Article and Find Full Text PDFUntil now, comparative studies on proton conductivity between organic ligands and related metal-organic frameworks (MOFs) have been very limited. Herein, a stable 2D Zn(II) MOF, [Zn(L)Cl] (), has been successfully synthesized by using a zwitterionic-type organic ligand, 2-(1-(carboxymethyl)-1-benzo[d]imidazol-3-ium-3-yl)acetate (HL). It is found that there are a large amount of free carboxyl groups and hydrogen bonds in the solid-state structure of HL, and a large number of chlorine ions are aligned in the channels of , which is favorable to the efficient proton transfer.
View Article and Find Full Text PDFChiral fermions in solid state feature "Fermi arc" states, connecting the surface projections of the bulk chiral nodes. The surface Fermi arc is a signature of nontrivial bulk topology. Unconventional chiral fermions with an extensive Fermi arc traversing the whole Brillouin zone have been theoretically proposed in CoSi.
View Article and Find Full Text PDFObjective: The aim of the study is to evaluate the optimal timing of sentinel lymph node biopsy (SLNB) in patients with clinical negative axillary lymph nodes (ALNs) before neoadjuvant therapy (NAT) and the feasibility of SLNB substituting for ALN dissection in patients with positive ALNs who convert to node negative, for HER2-positive disease.
Methods: Patients receiving SLNB with dual tracer mapping in the PEONY trial were analyzed.
Results: For 80 patients with clinical negative ALNs, the node negative rate by pathology after NAT was 83.
Acta Crystallogr C Struct Chem
January 2020
By employing the conjugated bithiophene ligand 5,5'-bis(1H-imidazol-1-yl)-2,2'-bithiophene (bibp), which can exhibit trans and cis conformations, two different Cu coordination polymers, namely, poly[[μ-5,5'-bis(1H-imidazol-1-yl)-2,2'-bithiophene-κN:N'](μ-4,4'-oxydibenzoato-κO:O')copper(II)], [Cu(CHO)(CHNS)] or [Cu(bibp)(oba)], (I), and catena-poly[μ-aqua-bis[μ-5,5'-bis(1H-imidazol-1-yl)-2,2'-bithiophene-κN:N']bis(μ-4,4'-oxydibenzoato)-κO:O':O'';κO:O',O'':O'-dicopper(II)], [Cu(CHO)(CHNS)(HO)] or [Cu(bibp)(oba)(HO)], (II), have been prepared through one-pot concomitant crystallization and characterized by single-crystal X-ray diffraction, IR spectroscopy, elemental analysis, powder X-ray diffraction (PXRD) and thermogravimetric (TG) analysis. Single-crystal X-ray diffraction indicates that the most interesting aspect of the structure is the existence of sole trans and cis conformations of the bibp ligand in a single net of (I) and (II), respectively. Compound (I) displays a threefold interpenetrating three-dimensional framework with a 4-connected {6.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) have been extensively explored as advanced chemical sensors in recent years. However, there are few studies on MOFs as acidic gas sensors, especially proton conductive MOFs. In this work, two new proton-conducting 3D MOFs, {[Co (p-CPhHIDC) (4,4'-bipy)(H O)]⋅2 H O} (1) (p-CPhH IDC=2-(4-carboxylphenyl)-1 H-imidazole-4,5-dicarboxylic acid; 4,4'-bipy=4,4'-bipyridine) and {[Co (p-CPhHIDC) (bpe)(H O)]⋅3 H O} (2) (bpe=trans-1,2-bis(4-pyridyl)ethylene) have been solvothermally prepared and investigated their formic acid sensing properties.
View Article and Find Full Text PDFThe traditional Chinese medicine of plays an important role in invigorating gas for ascending, benefiting blood for promoting production of fluid, and promoting circulation for removing obstruction in collaterals, which is consistent with the principle of treatment for osteoporosis. This study is designed to investigate the bioactive components on increasing peak bone mass (PBM) by exploring the spectrum-effect relationship between chromatography fingerprints and effect. Multiple indicators are selected to evaluate the pharmacological activity.
View Article and Find Full Text PDFAtomically thin 2D crystals have gained tremendous attention owing to their potential impact on future electronics technologies, as well as the exotic phenomena emerging in these materials. Monolayers of α-phase Sb (α-antimonene), which shares the same puckered structure as black phosphorous, are predicted to be stable with precious properties. However, the experimental realization still remains challenging.
View Article and Find Full Text PDFThe two-dimensional topological insulators host a full gap in the bulk band, induced by spin-orbit coupling (SOC) effect, together with the topologically protected gapless edge states. However, it is usually challenging to suppress the bulk conductance and thus to realize the quantum spin Hall (QSH) effect. In this study, we find a mechanism to effectively suppress the bulk conductance.
View Article and Find Full Text PDFThe combination of π-conjugated fluorophores within a hybrid system gives rise to a triphenylamine-functionalized material [Zn(bpba)(NO3)] (1) (Hbpba = 4-(bis(4-(pyridin-4-yl)phenyl)amino)benzoic acid). Compound 1 features a 2D + 2D → 2D parallel polycatenation structure with 63-hcb net. Photophysical studies revealed that the title phase showed superior sensitivity towards p-nitroaniline (p-NA) with a low detection limit (down to ∼0.
View Article and Find Full Text PDFActa Crystallogr C Struct Chem
February 2018
The design and synthesis of coordination polymers with a self-penetrating architecture has attracted much interest not only due to their interesting structures but also due to their potential applications. 5,5'-Bis(pyridin-4-yl)-2,2'-bithiophene (bpbp), as a conjugated bithiophene ligand, can exhibit trans and cis conformations and this can lead to the construction of a self-penetrating architecture. In addition, the semi-rigid ancillary ligand 4,4'-oxybis(benzoic acid) (Hoba) can adopt different coordination modes, resulting in coordination polymers with high-dimensional skeletons.
View Article and Find Full Text PDFModified classical trivacant Wells-Dawson α-[P2W15O56](12-) and the assembly of related sandwiched transition metal clusters are of interest, but surprisingly few reports of these materials exist because of the sensitivity of α-[P2W15O56](12-) to the assembly environment. Herein, we describe the pH-controlled assembly of two novel Dawson-sandwiched clusters, (H2bpz)6[Co2(P2W16O57)2]·22H2O (1, bpz = 3,3',5,5'-tetramethyl-4,4'-bipyrazole) and (H2bpz)6[Co3H2(P2W16O57)(P2W15O56)(H2O)]·12H2O (2), involving the in situ transformation of α-[P2W15O56](12-). Both clusters were characterized by X-ray single-crystal diffraction, FT-IR spectroscopy, UV-Visible spectroscopy, thermogravimetric analysis, powder X-ray diffraction, and elemental analyses.
View Article and Find Full Text PDFTwo luminescent Zn(II) metal-organic frameworks were prepared from a π-conjugated thiophene-containing carboxylic acid ligand. These two MOFs show strong luminescene and their luminescence could be quenched by a series of nitroaromatic explosives. Importantly, they exhibit very highly sensitive and selective detection of picric acid compared to other nitroaromatic explosives.
View Article and Find Full Text PDFChiral coordination polymers have attracted much attention due to their special properties and significant applications. In this work, we synthesized two non-centrosymmetric ligands, N,N-bis(4-(1H-imidazol-1-yl)phenyl)-4-(pyridin-4-yl)aniline (DIMPPA) and N-(4-(1H-imidazol-1-yl)phenyl)-4-(pyridin-4-yl)-N-(4-(pyridin-4-yl)phenyl)aniline (MIDPPA), via structural modification of two reported centrosymmetric ligands; after that achiral → chiral induction occurred in the construction of three coordination polymers namely {[Cd(DIMPPA)(5-OH-bdc)](H2O)}n (1), {[Co(DIMPPA)(5-OH-bdc)](H2O)}n (2) and {[Cd2(MIDPPA)2(D-ca)2(H2O)2](H2O)5}n (3), when replacing the reported centrosymmetric ligands with non-centrosymmetric ligands (5-OH-H2bdc = 5-hydroxyisophthalic acid, D-H2ca = D-camphoric acid). Isostructural complexes 1 and 2 exhibit chiral 2D → 3D frameworks with the coexistence of polyrotaxane and parallel polycatenation features.
View Article and Find Full Text PDFFive new metal complexes, {[Ni(DIDP)(m-bdc)(H2O)]·5H2O}n (1), {[Zn(DIDP)(hfipbb)]·2DMA}n (2), {[Zn(DIDP)(4,4'-sdb)]·H2O}n (3), {[Co(DIDP)(p-bdc)]}n (4), and {[Co2(DIDP)(hfipbb)2]·H2O}n (5), have been synthesized by reactions of the corresponding metal ions with a V-shaped ligand 2,8-di(1H-imidazol-1-yl)dibenzothiophene (DIDP) and different aromatic dicarboxylic acids, namely isophthalic acid (m-H2bdc), terephthalic acid (p-H2bdc), 4,4'-(hexafluoroisopropylidene)bis(benzoic acid) (H2hfipbb), and 4,4'-sulfonyldicarboxylic acid (4,4'-H2sdb), respectively. The structures of the complexes were determined by X-ray single-crystal diffraction. Complex 1 is a 1D chain structure containing a one-dimensional channel along the a direction and is further extended via O-H···S hydrogen bonds and C-H···π stacking interactions into a 3D framework.
View Article and Find Full Text PDF