Publications by authors named "Zhi M Liao"

Modeling the lifetime of a fused silica optic is described for a multiple beam, MJ-class laser system. This entails combining optic processing data along with laser shot data to account for complete history of optic processing and shot exposure. Integrating with online inspection data allows for the construction of a performance metric to describe how an optic performs with respect to the model.

View Article and Find Full Text PDF

We present a comprehensive statistical model which includes both the probability of growth and growth rate to describe the evolution of exit surface damage sites on fused silica optics over multiple laser shots spanning a wide range of fluences. We focus primarily on the parameterization of growth rate distributions versus site size and laser fluence using Weibull statistics and show how this model is consistent with established fracture mechanics concepts describing brittle materials. Key growth behaviors and prediction errors associated with the present model are also discussed.

View Article and Find Full Text PDF

Empirical numerical descriptions of the growth of laser-induced damage have been previously developed. In this work, Monte-Carlo techniques use these descriptions to model the evolution of a population of damage sites. The accuracy of the model is compared against laser damage growth observations.

View Article and Find Full Text PDF

Growth of laser damage on fused silica optical components depends on several key parameters including laser fluence, wavelength, pulse duration, and site size. Here we investigate the growth behavior of small damage sites on the exit surface of SiO₂ optics under exposure to tightly controlled laser pulses. Results demonstrate that the onset of damage growth is not governed by a threshold, but is probabilistic in nature and depends both on the current size of a damage site and the laser fluence to which it is exposed.

View Article and Find Full Text PDF

Historically, the rate at which laser-induced damage sites grow on the exit surface of SiO2 optics under subsequent illumination with nanosecond-laser pulses of any wavelength was believed to depend solely on laser fluence. We demonstrate here that much of the scatter in previous growth observations was due to additional parameters that were not previously known to affect growth rate, namely the temporal pulse shape and the size of a site. Furthermore, the remaining variability observed in the rate at which sites grow is well described in terms of Weibull statistics.

View Article and Find Full Text PDF

We have found the local temporal shot-to-shot variation of the NIF high-energy laser system to be relatively constant (~3.4% to 4.2% of the mean fluence).

View Article and Find Full Text PDF

We present an empirical model that describes the experimentally observed laser-induced bulk damage and conditioning behavior in deuterated potassium dihydrogen phosphate (DKDP) crystals. The model expands on an existing nanoabsorber precursor model and the multistep absorption mechanism to include two populations of absorbing defects, one with linear absorption and another with nonlinear absorption. We show that this model connects previously uncorrelated small-beam damage initiation probability data to large-beam damage density measurements over a range of nanosecond pulse widths.

View Article and Find Full Text PDF

Optical parametric chirped-pulse amplification (OPCPA) in nonlinear crystals has the potential to produce extremes of peak and average power but is limited either in energy by crystal growth issues or in average power by crystal thermo-optic characteristics. Recently, large (7.5 cm diameter x 25 cm length) crystals of yttrium calcium oxyborate (YCOB) have been grown and utilized for high-average-power second-harmonic generation.

View Article and Find Full Text PDF