Publications by authors named "Zhi Lin Yang"

Surface-enhanced Raman spectroscopy (SERS) has evolved significantly over fifty years into a powerful analytical technique. This review aims to achieve five main goals. (1) Providing a comprehensive history of SERS's discovery, its experimental and theoretical foundations, its connections to advances in nanoscience and plasmonics, and highlighting collective contributions of key pioneers.

View Article and Find Full Text PDF

The dynamics and chemistry of interfacial water are essential components of electrocatalysis because the decomposition and formation of water molecules could dictate the protonation and deprotonation processes on the catalyst surface. However, it is notoriously difficult to probe interfacial water owing to its location between two condensed phases, as well as the presence of external bias potentials and electrochemically induced reaction intermediates. An atomically flat single-crystal surface could offer an attractive platform to resolve the internal structure of interfacial water if advanced characterization tools are developed.

View Article and Find Full Text PDF
Article Synopsis
  • Enhanced electrochemiluminescence (ECL) focuses on achieving higher sensitivity and better detection limits using core-shell nanostructures that leverage unique surface plasmon resonance (SPR) for stronger electromagnetic fields.
  • Current structural designs face challenges due to the electrocatalytic activity of the metal core and the effects from the shell, which can interfere with SPR's contribution to ECL signals; thus, shell-isolated nanoparticles (SHINs) are developed to eliminate these interferences.
  • Through precise control of shell thickness and ECL platform design, researchers achieved a significant enhancement of ECL signals (up to ≈250-fold), particularly with a monolayer SHINs setup, facilitating advanced sensing
View Article and Find Full Text PDF

The light-matter interaction between plasmonic nanocavity and exciton at the sub-diffraction limit is a central research field in nanophotonics. Here, we demonstrated the vertical distribution of the light-matter interactions at ~1 nm spatial resolution by coupling A excitons of MoS and gap-mode plasmonic nanocavities. Moreover, we observed the significant photoluminescence (PL) enhancement factor reaching up to 2800 times, which is attributed to the Purcell effect and large local density of states in gap-mode plasmonic nanocavities.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to establish the normal testis volume values for Chinese boys aged 0-14 through ultrasound measurements.
  • Data was collected from 1607 boys, categorized into 14 age groups, allowing for statistical comparisons of testis volume across ages.
  • Results showed that testis volume increases significantly after age 8, with specific volume ranges provided for different age brackets, highlighting the use of ultrasound as an effective measurement tool for clinical evaluation.
View Article and Find Full Text PDF

Understanding the structure and dynamic process of water at the solid-liquid interface is an extremely important topic in surface science, energy science and catalysis. As model catalysts, atomically flat single-crystal electrodes exhibit well-defined surface and electric field properties, and therefore may be used to elucidate the relationship between structure and electrocatalytic activity at the atomic level. Hence, studying interfacial water behaviour on single-crystal surfaces provides a framework for understanding electrocatalysis.

View Article and Find Full Text PDF

Plasmonic metals under photoexcitation can generate energetic hot electrons to directly induce chemical reactions. However, the capability and fundamental insights of the transportation of these hot electrons at plasmonic metal-2D material interfaces remain unclear. Herein, hot-electron transfer at Au-graphene interfaces has been in situ studied using surface-enhanced Raman spectroscopy (SERS) with atomic layer accuracy.

View Article and Find Full Text PDF

The adsorption and electrooxidation of CO molecules at well-defined Pt(hkl) single-crystal electrode surfaces is a key step towards addressing catalyst poisoning mechanisms in fuel cells. Herein, we employed in situ electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) coupled with theoretical calculation to investigate CO electrooxidation on Pt(hkl) surfaces in acidic solution. We obtained the Raman signal of top- and bridge-site adsorbed CO* molecules on Pt(111) and Pt(100).

View Article and Find Full Text PDF

In dye-sensitized solar cells (DSSCs), the TiO/dye interface significantly affects photovoltaic performance. However, the adsorption and photoinduced behavior of dye molecules on the TiO substrate remains unclear. Herein, shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) was used to study the adsorption and photoinduced behavior of dye (N719) molecules on different TiO() surfaces.

View Article and Find Full Text PDF

In situ monitoring of electrocatalytic processes at solid-liquid interfaces is essential for the fundamental understanding of reaction mechanisms, yet quite challenging. Herein, Pt-on-Au nanocatalysts with a Au-core Pt-satellite superstructure have been fabricated. In such Pt-on-Au nanocatalysts, the Au cores can greatly amplify the Raman signals of the species adsorbed on Pt, allowing the in situ surface-enhanced Raman spectroscopy (SERS) study of the electrocatalytic reactions on Pt.

View Article and Find Full Text PDF

The creatinine concentration of human urine is closely related to human kidney health and its rapid, quantitative, and low-cost detection has always been demanded. Herein, a surface-enhanced Raman spectroscopic (SERS) method for rapid and cost-effective quantification of creatinine concentrations in human urine was developed. A Au nanoparticle solution (Au sol) was used as a SERS substrate and the influence of different agglomerating salts on its sensitivity toward detecting creatinine concentrations was studied and optimized, as well as the effect of both the salt and Au sol concentrations.

View Article and Find Full Text PDF

A gap-mode configuration was developed for the in situ SERS study of the structure-activity relationship of Au@Pd core-shell nanocatalysts, which show much better performance in the selective oxidation of benzyl alcohol compared to Pd. The in situ SERS results reveal that the tensile strain in the Pd shell could promote the activation of oxygen, thus improving the activity. Such a tensile strain effect decreases with the increase of the Pd shell thickness, leading to a volcano correlation between the activity and the shell thickness.

View Article and Find Full Text PDF

Solid/liquid interfaces are ubiquitous in nature and knowledge of their atomic-level structure is essential in elucidating many phenomena in chemistry, physics, materials science and Earth science. In electrochemistry, in particular, the detailed structure of interfacial water, such as the orientation and hydrogen-bonding network in electric double layers under bias potentials, has a significant impact on the electrochemical performances of electrode materials. To elucidate the structures of electric double layers at electrochemical interfaces, we combine in situ Raman spectroscopy and ab initio molecular dynamics and distinguish two structural transitions of interfacial water at electrified Au single-crystal electrode surfaces.

View Article and Find Full Text PDF

Plasmonic "hot spots" play a key role in surface-enhanced Raman scattering (SERS) enabling its ultrahigh surface sensitivity. Thus, precise prediction and control of the location of hot spots in surface nanostructures is of great importance. However, it is difficult to predict the exact location of hot spots due to complex plasmon competition and synergistic effects in three-dimensional (3D) multiparticle surface configurations.

View Article and Find Full Text PDF

Heterogeneous metal interfaces play a key role in determining the mechanism and performance of catalysts. However, in situ characterization of such interfaces at the molecular level is challenging. Herein, two model interfaces, Pd and Pt overlayers on Au single crystals, were constructed.

View Article and Find Full Text PDF

Tip-enhanced Raman spectroscopy can provide molecular fingerprint information with ultrahigh spatial resolution, but the tip will be easily contaminated, thus leading to artifacts. It also remains a great challenge to establish tip-enhanced fluorescence because of the quenching resulting from the proximity of the metal tip. Herein, we report shell-isolated tip-enhanced Raman and fluorescence spectroscopies by employing ultrathin shell-isolated tips fabricated by atomic layer deposition.

View Article and Find Full Text PDF

3D printing is a new technology in constant evolution. It has rapidly expanded and is now being used in health education. Patient-specific models with anatomical fidelity created from imaging dataset have the potential to significantly improve the knowledge and skills of a new generation of surgeons.

View Article and Find Full Text PDF

Insightful understanding of how interfacial structures and properties affect catalytic processes is one of the most challenging issues in heterogeneous catalysis. Here, the essential roles of Pt-Au and Pt-oxide-Au interfaces on the activation of H and the hydrogenation of para-nitrothiophenol (pNTP) were studied at molecular level by in situ surface-enhanced Raman spectroscopy (SERS) and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Pt-Au and Pt-oxide-Au interfaces were fabricated through the synthesis of Pt-on-Au and Pt-on-SHINs nanocomposites.

View Article and Find Full Text PDF

Surface molecular information acquired in situ from a catalytic process can greatly promote the rational design of highly efficient catalysts by revealing structure-activity relationships and reaction mechanisms. Raman spectroscopy can provide this rich structural information, but normal Raman is not sensitive enough to detect trace active species adsorbed on the surface of catalysts. Here we develop a general method for in situ monitoring of heterogeneous catalytic processes through shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) satellite nanocomposites (Au-core silica-shell nanocatalyst-satellite structures), which are stable and have extremely high surface Raman sensitivity.

View Article and Find Full Text PDF

An atomic- and molecular-level understanding of heterogeneous catalysis is required to characterize the nature of active sites and improve the rational design of catalysts. Achieving this level of characterization requires techniques that can correlate catalytic performances to specific surface structures, so as to avoid averaging effects. Tip-enhanced Raman spectroscopy combines scanning probe microscopy with plasmon-enhanced Raman scattering and provides simultaneous topographical and chemical information at the nano/atomic scale from ambient to ultrahigh-vacuum and electrochemical environments.

View Article and Find Full Text PDF

With UiO-66 metal organic framework as the adsorbent, the influences of factors such as time, pH value, temperature on the adsorption were studied. The results showed that the adsorption effect was best at pH=4.0 for the adsorption system and the adsorption equilibrium time was 24 h.

View Article and Find Full Text PDF

Correction for 'Shell-isolated nanoparticle-enhanced Raman spectroscopy study of the adsorption behaviour of DNA bases on Au(111) electrode surfaces' by Bao-Ying Wen et al., Analyst, 2016, DOI: 10.1039/c6an00180g.

View Article and Find Full Text PDF

For the first time, we used the electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy (EC-SHINERS) technique to in situ characterize the adsorption behaviour of four DNA bases (adenine, guanine, thymine, and cytosine) on atomically flat Au(111) electrode surfaces. The spectroscopic results of the various molecules reveal similar features, such as the adsorption-induced reconstruction of the Au(111) surface and the drastic Raman intensity reduction of the ring breathing modes after the lifting reconstruction. As a preliminary study of the photo-induced charge transfer (PICT) mechanism, the in situ spectroscopic results obtained on single crystal surfaces are excellently illustrated with electrochemical data.

View Article and Find Full Text PDF

Nanostructures with symmetry breaking can allow the coupling between dark and bright plasmon modes to induce strong Fano resonance. However, it is still a daunting challenge to prepare bottom-up self-assembled subwavelength asymmetric nanostructures with appropriate gaps between the nanostructures especially below 5 nm in solution. Here we present a viable self-assembly method to prepare symmetry-breaking nanostructures consisting of Ag nanocubes and Au nanospheres both with tunable size (90-250 nm for Au nanospheres; 100-160 nm for Ag nanocubes) and meanwhile control the nanogaps through ultrathin silica shells of 1-5 nm thickness.

View Article and Find Full Text PDF

The precise control over the locations of hot spots in a nanostructured ensemble is of great importance in plasmon-enhanced spectroscopy, chemical sensing, and super-resolution optical imaging. However, for multiparticle configurations over metal films that involve localized and propagating surface plasmon modes, the locations of hot spots are difficult to predict due to complex plasmon competition and synergistic effects. In this work, theoretical simulations based on multiparticle-film configurations predict that the locations of hot spots can be efficiently controlled in the particle-particle gaps, the particle-film junctions, or in both, by suppressing or promoting specific plasmonic coupling effects in specific wavelength ranges.

View Article and Find Full Text PDF