Publications by authors named "Zhi De Deng"

Electroconvulsive therapy (ECT) and magnetic seizure therapy (MST) are effective in the treatment of medication-resistant depression. Determining the stimulus frequency resulting in the lowest seizure threshold could produce fewer adverse effects by reducing the overall stimulus intensity. To determine the optimal frequency for seizure induction, four male rhesus macaques were titrated with an increasing number of pulses at fixed frequencies ranging from 5 to 240 pulses per second (pps) using ultrabrief-pulse right-unilateral ECT and circular-coil-on-vertex MST.

View Article and Find Full Text PDF

Background: Modeling brain stimulation at the microscopic scale may reveal new paradigms for various stimulation modalities.

Objective: We present the largest map to date of extracellular electric field distributions within a layer L2/L3 mouse primary visual cortex brain sample. This was enabled by the automated analysis of serial section electron microscopy images with improved handling of image defects, covering a volume of 250 × 140 × 90 μm³.

View Article and Find Full Text PDF

Background: Magnetic seizure therapy (MST) is under investigation as a treatment for adults with major depression. Previous research has suggested that MST has antidepressant efficacy comparable to that of electroconvulsive therapy (ECT), but with greater cognitive safety. The objective of the study was to compare the neurocognitive outcomes of patients receiving an acute course of MST with the outcomes of those receiving ECT for the treatment of major depressive episode.

View Article and Find Full Text PDF

In this study, repetitive transcranial magnetic stimulation was applied to either the right inferior frontal junction or the right inferior parietal cortex during a difficult aerial reconnaissance search task to test its capacity to improve search performance. Two stimulation strategies previously found to enhance cognitive performance were tested: The first is called "addition by subtraction," and the second condition utilizes a direct excitatory approach by applying brief trains of high-frequency repetitive transcranial magnetic stimulation immediately before task trials. In a within-subjects design, participants were given active or sham repetitive transcranial magnetic stimulation at either 1 Hz or at 1 Hz above their individual peak alpha frequency (IAF + 1, mean 11.

View Article and Find Full Text PDF

Tobacco-related deaths remain the leading cause of preventable death in the United States. Veterans suffering from posttraumatic stress disorder (PTSD)-about 11% of those receiving care from the Department of Veterans Affairs (VA)-have triple the risk of developing tobacco use disorder (TUD). The most efficacious strategies being used at the VA for smoking cessation only result in a 23% abstinence rate, and veterans with PTSD only achieve a 4.

View Article and Find Full Text PDF

Introduction: Electroconvulsive therapy (ECT) remains a critical intervention for treatment-resistant depression (MDD), yet its neurobiological underpinnings are not fully understood. This pilot study aims to investigate changes in loudness dependence of auditory evoked potentials (LDAEP), a proposed biomarker of serotonergic activity, in patients undergoing ECT.

Methods: High-resolution magnetoencephalography (MEG) was utilized to measure LDAEP in nine depressed patients receiving right unilateral ECT.

View Article and Find Full Text PDF

Attempts to dissociate electroconvulsive therapy (ECT) therapeutic efficacy from cognitive side effects of ECT include modifying electrode placement, but traditional electrode placements employing 2 large electrodes are inherently nonfocal, limiting the ability to selectively engage targets associated with clinical benefit while avoiding nontargets associated with adverse side effects. Limited focality represents a technical limitation of conventional ECT, and there is growing evidence that the spatial distribution of the ECT electric fields induced in the brain drives efficacy and side effects. Computational models can be used to predict brain current flow patterns for existing and novel ECT montages.

View Article and Find Full Text PDF

The transcranial magnetic stimulation (TMS) coil induces an electric field that diminishes rapidly upon entering the brain. This presents a challenge in achieving focal stimulation of a deep brain structure. Neuronal elements, including axons, dendrites, and cell bodies, exhibit specific time constants.

View Article and Find Full Text PDF

Electroconvulsive therapy (ECT) remains a critical intervention for treatment-resistant depression (MDD), yet its neurobiological underpinnings are not fully understood. This pilot study utilizes high-resolution magnetoencephalography (MEG) in nine depressed patients receiving right unilateral ECT, to investigate the changes in loudness dependence of auditory evoked potentials (LDAEP), a proposed biomarker of serotonergic activity, following ECT. We hypothesized that ECT would reduce the LDAEP slope, reflecting enhanced serotonergic neurotransmission.

View Article and Find Full Text PDF

Repetitive transcranial magnetic stimulation (rTMS) treatment protocols targeting the right dlPFC have been effective in reducing anxiety symptoms comorbid with depression. However, the mechanism behind these effects is unclear. Further, it is unclear whether these results generalize to non-depressed individuals.

View Article and Find Full Text PDF

The Stroop task is a well-established tool to investigate the influence of competing visual categories on decision making. Neuroimaging as well as rTMS studies have demonstrated the involvement of parietal structures, particularly the intraparietal sulcus (IPS), in this task. Given its reliability, the numerical Stroop task was used to compare the effects of different TMS targeting approaches by Sack and colleagues (Sack AT 2009), who elegantly demonstrated the superiority of individualized fMRI targeting.

View Article and Find Full Text PDF

Unlabelled: Modeling brain stimulation at the microscopic scale may reveal new paradigms for various stimulation modalities. We present the largest map to date of extracellular electric field distributions within a layer L2/L3 mouse primary visual cortex brain sample. This was enabled by the automated analysis of serial section electron microscopy images with improved handling of image defects, covering a volume of 250 × 140 × 90 μm .

View Article and Find Full Text PDF

Background: Transcranial magnetic stimulation (TMS) treatment response is influenced by individual variability in brain structure and function. Sophisticated, user-friendly approaches, incorporating both established functional magnetic resonance imaging (fMRI) and TMS simulation tools, to identify TMS targets are needed.

Objective: The current study presents the development and validation of the Bayesian Optimization of Neuro-Stimulation (BOONStim) pipeline.

View Article and Find Full Text PDF

Neurostimulation devices that use rotating permanent magnets are being explored for their potential therapeutic benefits in patients with psychiatric and neurological disorders. This study aims to characterize the electric field (E-field) for ten configurations of rotating magnets using finite element analysis and phantom measurements. Various configurations were modeled, including single or multiple magnets, and bipolar or multipolar magnets, rotated at 10, 13.

View Article and Find Full Text PDF

It has been suggested that aberrant excitation/inhibition (E/I) balance and dysfunctional structure and function of relevant brain networks may underlie the symptoms of autism spectrum disorder (ASD). However, the nomological network linking these constructs to quantifiable measures and mechanistically relating these constructs to behavioral symptoms of ASD is lacking. Herein we describe a within-subject, controlled, proof-of-mechanism study investigating the pathophysiology of auditory/language processing in adolescents with ASD.

View Article and Find Full Text PDF

Neurostimulation devices that use rotating permanent magnets are being explored for their potential therapeutic benefits in patients with psychiatric and neurological disorders. This study aims to characterize the electric field (E-field) for ten configurations of rotating magnets using finite element analysis and phantom measurements. Various configurations were modeled, including single or multiple magnets, bipolar or multipolar magnets, rotated at 10, 13.

View Article and Find Full Text PDF

In our recent work pertinent to modeling of brain stimulation and neurophysiological recordings, substantial modeling errors in the computed electric field and potential have sometimes been observed for standard multi-compartment head models. The goal of this study is to quantify those errors and, further, eliminate them through an adaptive mesh refinement (AMR) algorithm. The study concentrates on transcranial magnetic stimulation (TMS), transcranial electrical stimulation (TES), and electroencephalography (EEG) forward problems.

View Article and Find Full Text PDF

Electroconvulsive therapy (ECT) pulse amplitude, which dictates the induced electric field (E-field) magnitude in the brain, is presently fixed at 800 or 900 milliamperes (mA) without clinical or scientific rationale. We have previously demonstrated that increased E-field strength improves ECT's antidepressant effect but worsens cognitive outcomes. Amplitude-determined seizure titration may reduce the E-field variability relative to fixed amplitude ECT.

View Article and Find Full Text PDF

The modeling of transcranial magnetic stimulation (TMS)-induced electric fields (E-fields) is a versatile technique for evaluating and refining brain targeting and dosing strategies, while also providing insights into dose-response relationships in the brain. This review outlines the methodologies employed to derive E-field estimations, covering TMS physics, modeling assumptions, and aspects of subject-specific head tissue and coil modeling. We also summarize various numerical methods for solving the E-field and their suitability for various applications.

View Article and Find Full Text PDF

Importance: Electroconvulsive therapy (ECT) is highly effective and rapid in treating depression, but it carries a risk of significant cognitive adverse effects. Magnetic seizure therapy (MST), an investigational antidepressant treatment, may maintain the robust antidepressant efficacy of ECT while substantially reducing adverse effects due to its enhanced focality and weaker stimulation strength; however, previous clinical trials of MST were limited by small sample sizes.

Objective: To compare the antidepressant efficacy of MST vs ultrabrief pulse right unilateral (RUL) ECT.

View Article and Find Full Text PDF

Background: Repetitive transcranial magnetic stimulation (rTMS) has been increasingly used for treating obsessive-compulsive disorder (OCD). Although several meta-analyses have explored its effectiveness and safety, there is no umbrella review specifically focused on rTMS for OCD. This umbrella review followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and analyzed relevant meta-analyses on rTMS for OCD.

View Article and Find Full Text PDF