With the development of artificial intelligence and deep learning technologies, image captioning has become an important research direction at the intersection of computer vision and natural language processing. The purpose of image captioning is to generate corresponding natural language descriptions by understanding the content of images. This technology has broad application prospects in fields such as image retrieval, autonomous driving, and visual question answering.
View Article and Find Full Text PDFContrast Media Mol Imaging
April 2022
In order to improve the accuracy of remote sensing image target detection, this paper proposes a remote sensing image target detection algorithm DFS based on deep learning. Firstly, dimension clustering module, loss function, and sliding window segmentation detection are designed. The data set used in the experiment comes from GoogleEarth, and there are 6 types of objects: airplanes, boats, warehouses, large ships, bridges, and ports.
View Article and Find Full Text PDFBackground: Magnetic resonance imaging (MRI) has a wide range of applications in medical imaging. Recently, studies based on deep learning algorithms have demonstrated powerful processing capabilities for medical imaging data. Previous studies have mostly focused on common diseases that usually have large scales of datasets and centralized the lesions in the brain.
View Article and Find Full Text PDFComput Intell Neurosci
July 2021
Background: Breast invasive carcinoma (BRCA) is not a single disease as each subtype has a distinct morphology structure. Although several computational methods have been proposed to conduct breast cancer subtype identification, the specific interaction mechanisms of genes involved in the subtypes are still incomplete. To identify and explore the corresponding interaction mechanisms of genes for each subtype of breast cancer can impose an important impact on the personalized treatment for different patients.
View Article and Find Full Text PDFA novel method is developed for predicting the stage of a cancer tissue based on the consistency level between the co-expression patterns in the given sample and samples in a specific stage. The basis for the prediction method is that cancer samples of the same stage share common functionalities as reflected by the co-expression patterns, which are distinct from samples in the other stages. Test results reveal that our prediction results are as good or potentially better than manually annotated stages by cancer pathologists.
View Article and Find Full Text PDFMed Biol Eng Comput
January 2019
With the advent of biomedical imaging technology, the number of captured and stored biomedical images is rapidly increasing day by day in hospitals, imaging laboratories and biomedical institutions. Therefore, more robust biomedical image analysis technology is needed to meet the requirement of the diagnosis and classification of various kinds of diseases using biomedical images. However, the current biomedical image classification methods and general non-biomedical image classifiers cannot extract more compact biomedical image features or capture the tiny differences between similar images with different types of diseases from the same category.
View Article and Find Full Text PDFComput Methods Programs Biomed
May 2018
Background And Objectives: The traditional biomedical image retrieval methods as well as content-based image retrieval (CBIR) methods originally designed for non-biomedical images either only consider using pixel and low-level features to describe an image or use deep features to describe images but still leave a lot of room for improving both accuracy and efficiency. In this work, we propose a new approach, which exploits deep learning technology to extract the high-level and compact features from biomedical images. The deep feature extraction process leverages multiple hidden layers to capture substantial feature structures of high-resolution images and represent them at different levels of abstraction, leading to an improved performance for indexing and retrieval of biomedical images.
View Article and Find Full Text PDFComput Methods Programs Biomed
March 2017
Background And Objectives: Highly accurate classification of biomedical images is an essential task in the clinical diagnosis of numerous medical diseases identified from those images. Traditional image classification methods combined with hand-crafted image feature descriptors and various classifiers are not able to effectively improve the accuracy rate and meet the high requirements of classification of biomedical images. The same also holds true for artificial neural network models directly trained with limited biomedical images used as training data or directly used as a black box to extract the deep features based on another distant dataset.
View Article and Find Full Text PDFComput Intell Neurosci
February 2017
We proposed a new method of gist feature extraction for building recognition and named the feature extracted by this method as the histogram of oriented gradient based gist (HOG-gist). The proposed method individually computes the normalized histograms of multiorientation gradients for the same image with four different scales. The traditional approach uses the Gabor filters with four angles and four different scales to extract orientation gist feature vectors from an image.
View Article and Find Full Text PDF