Calcific aortic valve stenosis (CAVS) is the most common heart valve disorder among humans. To date, no effective method has been identified to prevent this disease. Herein, we aimed to identify novel diagnostic and mitochondria-related biomarkers of CAVS, based on two machine learning algorithms.
View Article and Find Full Text PDFAn error appeared in the article entitled "Cyclin Dependent Kinase 1 (CDK1) Activates Cardiac Fibroblasts via Directly Phosphorylating Paxillin at Ser244" by Chen Sai, Jiang Yunhan, Jian Zhao, Zhu Yu, Zhu Yun, Cao Zhezhe, Tang Fuqin, Xiao Yingbin, and Ma Ruiyan (Vol. 60, No. 2, 374-83, 2019).
View Article and Find Full Text PDFInt J Clin Exp Pathol
December 2018
Hypoxia-induced apoptosis is an inevitable problem in cyanotic congenital heart disease. In the present study, we investigated effects of melatonin on hypoxic cardiomyocytes in vitro and in vivo, and explored its underlying mechanism. H9C2 cells were subjected to hypoxia for 48 hours.
View Article and Find Full Text PDFAtrial fibrillation has caused severe burden for people worldwide. Differentiation of fibroblasts into myofibroblasts, and consequent progress in atrial structural remodeling have been considered the basis for persistent atrial fibrillation, yet little is known about the molecular mechanisms underlying the process. Here, we show that cyclin-dependent kinase 1 (CDK1) is activated in atrial fibroblasts from patients with atrial fibrillation (AFPAF) and in platelet derived growth factor BB (PDGF-BB)-treated atrial fibroblasts from patients with sinus rhythm (AFPSR).
View Article and Find Full Text PDFAortic valve stenosis is the most common cause of morbidity and mortality in valvular heart disease in aged people. Both microRNA (miRNA) and mRNA are potential targets for the diagnosis and therapeutic intervention of myocardial ischemia induced by calcified aortic valve stenosis (CAVS), with unclear mechanisms. Here, 3 gene expression profiles of 47 male participants were applied to generate shared differentially expressed genes (DEGs) with significant major biological functions.
View Article and Find Full Text PDF