Introduction: Cell fate determination and transition are of paramount importance in biology and medicine. Naive pluripotency could be achieved by reprogramming differentiated cells. However, the mechanism is less clear.
View Article and Find Full Text PDFCell Death Dis
September 2024
Signal Transduct Target Ther
September 2024
Cardiac biological pacing (BP) is one of the future directions for bradyarrhythmias intervention. Currently, cardiac pacemaker cells (PCs) used for cardiac BP are mainly derived from pluripotent stem cells (PSCs). However, the production of high-quality cardiac PCs from PSCs remains a challenge.
View Article and Find Full Text PDFBackground: Cardiovascular diseases (CVDs) have the highest mortality worldwide. Human pluripotent stem cells (hPSCs) and their cardiomyocyte derivatives (hPSC-CMs) offer a valuable resource for disease modeling, pharmacological screening, and regenerative therapy. While most CVDs are linked to significant over-production of reactive oxygen species (ROS), the effects of current antioxidants targeting excessive ROS are limited.
View Article and Find Full Text PDFAnthracyclines including doxorubicin (DOX) are still the most widely used and efficacious antitumor drugs, although their cardiotoxicity is a significant cause of heart failure. Despite considerable efforts being made to minimize anthracycline-induced cardiac adverse effects, little progress has been achieved. In this study, we aimed to explore the role and underlying mechanism of SNX17 in DOX-induced cardiotoxicity.
View Article and Find Full Text PDF