Silicon (Si) is regarded as the most potential anode material for next-generation lithium-ion batteries (LIBs). However, huge volume expansion hinders its commercial application. Here, a yolk-shell structural nitrogen-doped carbon coated Si@SiO is prepared by SiO template and HF etching method.
View Article and Find Full Text PDFInfluence of interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time. The mitigation of interface polarization is precisely revealed by the combination of 2D modeling simulation and Cryo-TEM observation, which can be attributed to a higher fraction formation of conductive inorganic species in bilayer SEI, and primarily contributes to a linear decrease in ionic diffusion energy barrier. The improved stress dissipation presented by AFM and Raman shift is critical for the linear reduction in electrode residual stress and thickness swelling.
View Article and Find Full Text PDFSilicon-based anodes have been considered as ideal candidates for next-generation Li-ion batteries. However, the rapid cyclability decay due to significant volume expansion limits its commercialization. Besides, the instable interface further aggravates the degradation.
View Article and Find Full Text PDFBuilding a stable solid electrolyte interphase (SEI) is an effective method to enhance the performance of Si-based materials. However, the general strategy ignores the severe side reaction that originates from the penetration of the fluoride anion which influences the stability of the SEI. In this work, an analytical method is established to study the chemical reaction mechanism between the silicon and electrolyte by combining X-ray diffraction (XRD) with mass spectrometry (MS) technology.
View Article and Find Full Text PDFDeveloping a practical silicon-based (Si-based) anode is a precondition for high-performance lithium-ion batteries. However, the chemical reactivity of the Si renders it liable to be consumed, which must be completely understood for it to be used in practical battery systems. Here, a fresh and fundamental mechanism is proposed for the rapid failure of Si-based materials.
View Article and Find Full Text PDF