In many applications, it is important to reconstruct a fluid flow field, or some other high-dimensional state, from limited measurements and limited data. In this work, we propose a shallow neural network-based learning methodology for such fluid flow reconstruction. Our approach learns an end-to-end mapping between the sensor measurements and the high-dimensional fluid flow field, without any heavy preprocessing on the raw data.
View Article and Find Full Text PDFBackground: Ultrasound imaging is safer than other imaging modalities, because it is noninvasive and nonradiative. Speckle noise degrades the quality of ultrasound images and has negative effects on visual perception and diagnostic operations.
Methods: In this paper, a nonlocal total variation (NLTV) method for ultrasonic speckle reduction is proposed.