Chemical proteomics enables the global analysis of small molecule-protein interactions in native biological systems and has emerged as a versatile approach for ligand discovery. The range of small molecules explored by chemical proteomics has, however, remained limited. Here, we describe a diversity-oriented synthesis (DOS)-inspired library of stereochemically defined compounds bearing diazirine and alkyne units for UV light-induced covalent modification and click chemistry enrichment of interacting proteins, respectively.
View Article and Find Full Text PDFThe proton-sensing heterotrimeric guanine nucleotide-binding protein-coupled receptor GPR65 is expressed in immune cells and regulates tissue homeostasis in response to decreased extracellular pH, which occurs in the context of inflammation and tumorigenesis. Genome-wide association studies linked to several autoimmune and inflammatory diseases such as multiple sclerosis and inflammatory bowel disease (IBD). The loss-of-function GPR65 I231L IBD risk variant alters cellular metabolism, impairs protective tissue functions, and increases proinflammatory cytokine production.
View Article and Find Full Text PDFChemical proteomics enables the global assessment of small molecule-protein interactions in native biological systems and has emerged as a versatile approach for ligand discovery. The range of small molecules explored by chemical proteomics has, however, been limited. Here, we describe a diversity-oriented synthesis (DOS)-inspired library of stereochemically-defined compounds bearing diazirine and alkyne units for UV light-induced covalent modification and click chemistry enrichment of interacting proteins, respectively.
View Article and Find Full Text PDFDiversity-oriented synthesis (DOS) is a powerful strategy to prepare molecules with underrepresented features in commercial screening collections, resulting in the elucidation of novel biological mechanisms. In parallel to the development of DOS, DNA-encoded libraries (DELs) have emerged as an effective, efficient screening strategy to identify protein binders. Despite recent advancements in this field, most DEL syntheses are limited by the presence of sensitive DNA-based constructs.
View Article and Find Full Text PDFReported herein is the divergent syntheses of [5,5] and [6,5] spiro-heterocycles under Lewis-acid-assisted palladium catalysis. In particular, an unprecedented switch from alkoxide-π-allyl to dienolate reactivity was achieved by the use of palladium-titanium relay catalysis, and represents umpolung reactivity of vinylethylene carbonates. This method uses a simple procedure and commercially available catalysts, and delivers both classes of spiro-heterocycles, bearing three contiguous stereocenters, in high yield and uniformly excellent diastereoselectivity.
View Article and Find Full Text PDFThe first catalytic formal [5+4] cycloaddition to prepare nine-membered heterocycles is presented. Under palladium catalysis, the reaction of N-tosyl azadienes and substituted vinylethylene carbonates (VECs) proceeds smoothly to produce benzofuran-fused heterocycles in uniformly high efficiency. Highly diastereoselective functionalization of the nine-membered heterocycles through peripheral attack is also demonstrated.
View Article and Find Full Text PDF