Expert Rev Anticancer Ther
May 2024
Introduction: Non-coding RNAs (ncRNAs), which are incapable of encoding proteins, are involved in the progression of numerous tumors by altering transcriptional and post-transcriptional processing. Recent studies have revealed prominent features of ncRNAs in pyroptosis, a type of non-apoptotic programmed cellular destruction linked to an inflammatory reaction. Drug resistance has arisen gradually as a result of anti-apoptotic proteins, therefore strategies based on pyroptotic cell death have attracted increasing attention.
View Article and Find Full Text PDFBreast cancer is the leading cancer-related cause of death in women. Here we show that solute carrier family 38-member 3 (SLC38A3) is overexpressed in breast cancer, particularly in triple-negative breast cancer (TNBC) cells and tissues. Our study reveals that SLC38A3 regulates cellular glutamine, glutamate, asparagine, aspartate, alanine, and glutathione (GSH) levels in breast cancer cells.
View Article and Find Full Text PDFBackground: Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype and leads to the poorest patient outcomes despite surgery and chemotherapy treatment. Exploring new molecular mechanisms of TNBC that could lead to the development of novel molecular targets are critically important for improving therapeutic options for treating TNBC.
Methods: We sought to identify novel therapeutic targets in TNBC by combining genomic and functional studies with lipidomic analysis, which included mechanistic studies to elucidate the pathways that tie lipid profile to critical cancer cell properties.
The premetastatic niche hypothesis proposes an active priming of the metastatic site by factors secreted from the primary tumor prior to the arrival of the first cancer cells. We investigated several extracellular matrix (ECM) structural proteins, ECM degrading enzymes, and ECM processing proteins involved in the ECM remodeling of the premetastatic niche. Our in vitro model consisted of lung fibroblasts, which were exposed to factors secreted by nonmalignant breast epithelial cells, nonmetastatic breast cancer cells, or metastatic breast cancer cells.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2023
Background: Metastasis and drug resistance of breast cancer have become a barrier to treating patients successfully. Long noncoding RNAs (lncRNAs) are known as vital players in cancer development and progression. METHODS: The RT-qPCR were used to detect the gene expression.
View Article and Find Full Text PDFNMR spectroscopy and matrix assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) are both commonly used to detect large numbers of metabolites and lipids in metabolomic and lipidomic studies. We have demonstrated a new workflow, highlighting the benefits of both techniques to obtain metabolomic and lipidomic data, which has realized for the first time the combination of these two complementary and powerful technologies. NMR spectroscopy is frequently used to obtain quantitative metabolite information from cells and tissues.
View Article and Find Full Text PDFAs the first rate-limiting enzyme in fatty acid oxidation (FAO), CPT1 plays a significant role in metabolic adaptation in cancer pathogenesis. FAO provides an alternative energy supply for cancer cells and is required for cancer cell survival. Given the high proliferation rate of cancer cells, nucleotide synthesis gains prominence in rapidly proliferating cells.
View Article and Find Full Text PDFChemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) is emerging as an alternative to gadolinium-based contrast MRI. We have evaluated the possibility of CEST MRI of orthotopic breast tumor xenografts with unlabeled aspirin's conversion to salicylic acid (SA) through various enzymatic activities, most notably inhibition of cyclooxygenase (COX)-1/-2 enzymes. : We measured the COX-1/-2 expression in four breast cancer cell lines by Western Blot analysis and selected the highest and lowest expressing cell lines.
View Article and Find Full Text PDFBackground: Carnitine palmitoyl transferase 1A (CPT1A), the key regulator of fatty acid oxidation, contributes to tumor metastasis and therapeutic resistance. We aimed to identify its clinical significance as a biomarker for the diagnosis and prediction of breast cancer.
Methods: Western blot, ELISA and in silico analysis were used to confirm CPT1A levels in breast cancer cell lines, cell culture medium and breast cancer tissues.
Ac2-26, a mimetic peptide of Annexin-A1, plays a vital role in the anti-inflammatory response mediated by astrocytes. In this study, we aimed to explore the underlying mechanisms of Ac2-26-mediated anti-inflammatory effect. Specifically, we investigated the inhibitory effects of Ac2-26 on lipopolysaccharide (LPS)-induced astrocyte migration and on pro-inflammatory cytokines and chemokines expressions, as well as one glutathione (GSH) reductase mRNA and total intracellular GSH levels in LPS-induced astrocytes.
View Article and Find Full Text PDFNowadays, vitamin D is known to have functions beyond bone formation, including inhibiting angiogenesis and promoting tumor apoptosis. CYP27B1 and group-specific component (GC), the main enzyme responsible for the degradation and transport of active vitamin D, play important role in many cancer-related cellular processes. Relationships between CYP27B1 and GC polymorphisms and cancer susceptibility have been widely investigated, whereas the results are inconsistent.
View Article and Find Full Text PDFBackground: Breast cancer is the most common cancer type in female. As microRNAs play vital role in breast cancer, this study aimed to explore the molecular mechanism and clinical value of miR-21 in breast cancer.
Methods: qRT-PCR was performed to detect miR-21 levels in plasma of 127 healthy controls, 82 benign breast tumor, 252 breast cancer patients, as well as in breast cancer cell lines.
The PPAR coactivator-1α (PGC1α) is an important transcriptional co-activator in control of fatty acid metabolism. Mitochondrial fatty acid oxidation (FAO) is the primary pathway for the degradation of fatty acids and promotes NADPH and ATP production. Our previous study demonstrated that upregulation of carnitine palmitoyl transferase 1 A (CPT1A), the key regulator of FAO, promotes radiation resistance of nasopharyngeal carcinoma (NPC).
View Article and Find Full Text PDFMitochondria are the major cellular energy-producing organelles and intracellular source of reactive oxygen species. These organelles are responsible for driving cell life and death through mitochondrial network structure homeostasis, which is determined by a balance of fission and fusion. Recent advances revealed that a number of components of the fission and fusion machinery, including dynamin-related protein 1 (Drp1), mitofusin1/2 (Mfn1/2) and Optic atrophy 1 (OPA1), that have been implicated in mitochondrial shape changes are indispensible for autophagy, apoptosis and necroptosis.
View Article and Find Full Text PDFHotspot mutations of isocitrate dehydrogenase 1 and 2 (IDH1/2) have been studied in several cancers. However, the function of wild-type IDH2 in lung cancer and the mechanism of its contribution to growth of cancer cells remain unknown. Here, we explored the role and mechanism of wild-type IDH2 in promoting growth of lung cancer.
View Article and Find Full Text PDFNasopharyngeal carcinoma (NPC) has a particularly high prevalence in southern China, southeastern Asia and northern Africa. Radiation resistance remains a serious obstacle to successful treatment in NPC. This study aimed to explore the metabolic feature of radiation-resistant NPC cells and identify new molecular-targeted agents to improve the therapeutic effects of radiotherapy in NPC.
View Article and Find Full Text PDFLung cancer is the most common leading cause of cancer-related death worldwide. Late diagnosis contributes to a high mortality rate and poor survival of this cancer. In our previous study, we found that IDH2 polymorphism rs11540478 is a risk factor for lung cancer.
View Article and Find Full Text PDFNecroptosis is an alternative programmed cell death pathway that is unleashed in the absence of apoptosis and mediated by signaling complexes containing receptor-interating protein kinase 1 (RIPK1) and RIPK3. This form of cell death has recently been implicated in host defense system to eliminate pathogen-infected cells. However, only a few viral species such as herpes simplex virus (HSV) and cytomegalovirus (CMV) have evolved mechanisms inhibiting necroptosis to overcome host antiviral defense, which is important for successful pathogenesis.
View Article and Find Full Text PDFCancer cells frequently display fundamentally altered cellular metabolism, which provides the biochemical foundation and directly contributes to tumorigenicity and malignancy. Rewiring of metabolic programmes, such as aerobic glycolysis and increased glutamine metabolism, are crucial for cancer cells to shed from a primary tumor, overcome the nutrient and energy deficit, and eventually survive and form metastases. However, the role of lipid metabolism that confers the aggressive properties of malignant cancers remains obscure.
View Article and Find Full Text PDFGrifolin, a farnesyl phenolic compound isolated from the fresh fruiting bodies of the mushroom Albatrellus confluens, exhibits effective antitumor bioactivity in previous study of our group and other lab. In this study, we observed that grifolin inhibited tumor cells adhesion and migration. Moreover, grifolin reduced reactive oxygen species (ROS) production and caused cellular ATP depletion in high-metastatic tumor cells.
View Article and Find Full Text PDFWe conducted this research to explore the role of latent membrane protein 1 (LMP1) encoded by the Epstein-Barr virus (EBV) in modulating the DNA damage response (DDR) and its regulatory mechanisms in radioresistance. Our results revealed that LMP1 repressed the repair of DNA double strand breaks (DSBs) by inhibiting DNA-dependent protein kinase (DNA-PK) phosphorylation and activity. Moreover, LMP1 reduced the phosphorylation of AMP-activated protein kinase (AMPK) and changed its subcellular location after irradiation, which appeared to occur through a disruption of the physical interaction between AMPK and DNA-PK.
View Article and Find Full Text PDFPGC1α is a transcription factor coactivator that influences a majority of cellular metabolic pathways. Abnormal expression of PGC1α is associated with several chronic diseases and, in recent years, it has been shown to be a critical controller of cancer development. PGC1α acts as a stress sensor in cancer cells and can be activated by nutrient deprivation, oxidative damage, and chemotherapy.
View Article and Find Full Text PDF