Changes in operating conditions often cause the distribution of signal features to shift during the bearing fault diagnosis process, which will result in reduced diagnostic accuracy of the model. Therefore, this paper proposes a dual-channel parallel adversarial network (DPAN) based on vision transformer, which extracts features from acoustic and vibration signals through parallel networks and enhances feature robustness through adversarial training during the feature fusion process. In addition, the Wasserstein distance is used to reduce domain differences in the fused features, thereby enhancing the network's generalization ability.
View Article and Find Full Text PDF