Microstructures of additively manufactured metal parts are crucial since they determine the mechanical properties. The evolution of the microstructures during layer-wise printing is complex due to continuous re-melting and reheating effects. The current approach to studying this phenomenon relies on time-consuming numerical models such as finite element analysis due to the lack of effective sub-surface temperature measurement techniques.
View Article and Find Full Text PDFFalse results and time delay are longstanding challenges in biosensing. While classification models and deep learning may provide new opportunities for improving biosensor performance, such as measurement confidence and speed, it remains a challenge to ensure that predictions are explainable and consistent with domain knowledge. Here, we show that consistency of deep learning classification model predictions with domain knowledge in biosensing can be achieved by cost function supervision and enables rapid and accurate biosensing using the biosensor dynamic response.
View Article and Find Full Text PDFLaser powder bed fusion is a promising technology for local deposition and microstructure control, but it suffers from defects such as delamination and porosity due to the lack of understanding of melt pool dynamics. To study the fundamental behavior of the melt pool, both geometric and thermal sensing with high spatial and temporal resolutions are necessary. This work applies and integrates three advanced sensing technologies: synchrotron X-ray imaging, high-speed IR camera, and high-spatial-resolution IR camera to characterize the evolution of the melt pool shape, keyhole, vapor plume, and thermal evolution in Ti-6Al-4V and 410 stainless steel spot melt cases.
View Article and Find Full Text PDFUnlabelled: An effective lithium-ion battery (LIB) recycling infrastructure is of great importance to alleviate the concerns over the disposal of waste LIBs and the sustainability of critical elements for producing LIB components. The End-of-life (EOL) LIBs are in various sizes and shapes, which create significant challenges to automate a few unit operations (e.g.
View Article and Find Full Text PDFPhysical monitoring systems represent potentially powerful assessment devices to detect and describe occupational physical activities. A promising technology for such use is smart textile systems (STSs). Our goal in this exploratory study was to assess the feasibility and accuracy of using two STSs to classify several manual material handling (MMH) tasks.
View Article and Find Full Text PDFObjective: The prediction of survival time after organ transplantations and prognosis analysis of different risk groups of transplant patients are not only clinically important but also technically challenging. The current studies, which are mostly linear modeling-based statistical analyses, have focused on small sets of disparate predictive factors where many potentially important variables are neglected in their analyses. Data mining methods, such as machine learning-based approaches, are capable of providing an effective way of overcoming these limitations by utilizing sufficiently large data sets with many predictive factors to identify not only linear associations but also highly complex, non-linear relationships.
View Article and Find Full Text PDFBackground: Predicting the survival of heart-lung transplant patients has the potential to play a critical role in understanding and improving the matching procedure between the recipient and graft. Although voluminous data related to the transplantation procedures is being collected and stored, only a small subset of the predictive factors has been used in modeling heart-lung transplantation outcomes. The previous studies have mainly focused on applying statistical techniques to a small set of factors selected by the domain-experts in order to reveal the simple linear relationships between the factors and survival.
View Article and Find Full Text PDF