Given that agriculture is both a carbon source and sink, the sustainability goals of carbon peaking and neutrality place high demands on the green and low-carbon agricultural development in China, and the exploration of a realistic path for a sustainable agricultural development is urgently needed. Under the above 'dual carbon' target, this study focused on the key issue of how to improve China's agricultural eco-efficiency (AEE) and constructed an innovative AEE indicator system that can reflect carbon constraint and coordinated agricultural economic development, resource use and ecological environment. The super-efficient slack-based measured Data Envelopment Analysis (SBM-DEA) method, which considers undesirable outputs, was applied to re-measure the AEE of 30 provinces and cities in China from 2001 to 2020, and its spatial and temporal evolution was analysed in conjunction with kernel density estimation.
View Article and Find Full Text PDFCyclic GMP-AMP synthase (cGAS), as the major DNA sensor, initiates DNA-stimulated innate immune responses and is essential for a healthy immune system. Although some regulators of cGAS have been reported, it still remains largely unclear how cGAS is precisely and dynamically regulated and how many potential regulators govern cGAS. Here we carry out proximity labeling of cGAS with TurboID in cells and identify a number of potential cGAS-interacting or -adjacent proteins.
View Article and Find Full Text PDFIn the Southern Ocean, the living environment of organisms has changed due to the dramatic increase in melting sea ice and the loss of glaciers, which have consequently caused substantial changes in biodiversity. Samples of pelagic ciliates from 13 sites were collected as bioindicators to demonstrate the relationship between spatial distribution patterns and environmental heterogeneity affected by sea ice melting and to reveal the community assembly mechanisms in the Ross Sea. Univariate analyses and multivariate analyses were effective tools demonstrating clear spatial patterns and providing a sufficient explanation to interpret strong correlations between pelagic ciliate communities and environmental variations, especially the distribution pattern of nutrients and Chl a.
View Article and Find Full Text PDFTissue engineering based on the combined use of isolated cells, scaffolds, and growth factors is widely used; however, the manufacture of cell-preloaded scaffolds faces challenges. Herein, we fabricated a multicomponent scaffold with multiple component accommodations, including bioactive molecules (BMs), such as fibroblast growth factor-2 (FGF-2) and l-ascorbic acid 2-phosphate (A2-P), and living cells of human adipose-derived stem cells (hASCs), within one scaffold construct. We report an innovative fabrication process based on vapor-phased construction using iced templates for vapor sublimation.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
January 2023
Multiple image hiding aims to hide multiple secret images into a single cover image, and then recover all secret images perfectly. Such high-capacity hiding may easily lead to contour shadows or color distortion, which makes multiple image hiding a very challenging task. In this paper, we propose a novel multiple image hiding framework based on invertible neural network, namely DeepMIH.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
November 2022
When viewing omnidirectional images (ODIs), viewers can access different viewports via head movement (HM), which sequentially forms head trajectories in spatial-temporal domain. Thus, head trajectories play a key role in modeling human attention on ODIs. In this paper, we establish a large-scale dataset collecting 21,600 head trajectories on 1,080 ODIs.
View Article and Find Full Text PDF2'3'-cyclic GMP-AMP (2'3'-cGAMP), generated by cyclic GMP-AMP synthase (cGAS) under activation by cytosolic DNA, has a vital role in innate immune response via its receptor protein stimulator of interferon genes (STING) to fight viral infections and tumors. In order to have a complete understanding of biological functions of 2'3'-cGAMP, it is important to find out whether 2'3'-cGAMP has other unrevealed binding proteins present in mammalian cells and executes unknown functions. Here we report the 2'3'-cGAMP-based photoaffinity probes that capture and isolate 2'3'-cGAMP-binding proteins.
View Article and Find Full Text PDFA scaffold was fabricated to synergistically encapsulate living human adipose-derived stem cells (hASCs) and platelet-rich plasma (PRP) based on a vapor-phase sublimation and deposition process. During the process, ice templates were prepared using sterile water as the solvent and were used to accommodate the sensitive living cells and PRP molecules. Under controlled processing conditions, the ice templates underwent vapor sublimation to evaporate water molecules, while at the same time, vapor-phase deposition of poly--xylylene (Parylene, USP Class VI highly biocompatible) occurred to replace the templates, and the final construction yielded a scaffold with Parylene as the matrix, with simultaneously encapsulated living hASCs and PRP molecules.
View Article and Find Full Text PDFACS Appl Bio Mater
September 2020
In this study, a porous, three-dimensional material of parylene (poly--xylylene) incorporating keratin was fabricated. As an FDA-approved material, parylene is highly stable and biocompatible. Keratin is an abundant natural material that can enhance cell adhesion and wound healing.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
March 2021
The past few years have witnessed great success in applying deep learning to enhance the quality of compressed image/video. The existing approaches mainly focus on enhancing the quality of a single frame, not considering the similarity between consecutive frames. Since heavy fluctuation exists across compressed video frames as investigated in this paper, frame similarity can be utilized for quality enhancement of low-quality frames given their neighboring high-quality frames.
View Article and Find Full Text PDFIEEE Trans Image Process
November 2019
An extensive study on the in-loop filter has been proposed for a high efficiency video coding (HEVC) standard to reduce compression artifacts, thus improving coding efficiency. However, in the existing approaches, the in-loop filter is always applied to each single frame, without exploiting the content correlation among multiple frames. In this paper, we propose a multi-frame in-loop filter (MIF) for HEVC, which enhances the visual quality of each encoded frame by leveraging its adjacent frames.
View Article and Find Full Text PDFThe efficient and practical nucleophilic cyanation and trifluoromethylation with appropriate trimethylsilyl nucleophiles were developed. Catalytic amounts of cheap and nontoxic CsCO were used to maintain a sufficiently high concentration of nucleophilic anion (CN or CF) which could begin the catalytic cycle. The present methodologies provide diverse functionalized monofluoroalkenes bearing a cyano and trifluoromethyl group with excellent to moderate stereoselectivities.
View Article and Find Full Text PDFA prospective design for interface properties is enabled to perform precise functionalization, erasure capability for existing properties, reactivation of surface functionality to a second divergent property. A vapor-deposited, 2-nitro-5-(prop-2-yn-1-yloxy)methylbenzyl carbamate-functionalized poly--xylylene coating is synthesized in this study to realize such tasks by offering the accessibility of the azide/alkyne click reaction, an integrated photochemical decomposition/cleavage moiety, and the reactivation sites of amines behind the cleavage that allow the installation of a second surface function. With the benefits from the mild processing conditions used for the coatings and the rapid response of the photochemical reaction, the creation of sophisticated interface properties and localized chemical compositions was elegantly demonstrated with a hybrid functionality including a confined hydrophlic/hydrophobic wetting property and/or a cell adherent/repellent platform on such a coating surface.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
March 2019
The field of implantable electronics relies on using silicon materials due to the merits of a well-established fabrication process and favorable properties; of particular interest is the surface modification of such materials. In the present study, we introduce a surface modification technique based on coatings of functionalized Parylene on silicon substrates, where the modified layers provide a defined cell adhesion capability for the resultant silicon materials/devices. Functionalization of Parylene was achieved during a one-step chemical vapor deposition (CVD) polymerization process, forming NHS ester-functionalized Parylene, and subsequent RGD attachment was enabled via a conjugation reaction between the NHS ester and amine groups.
View Article and Find Full Text PDFAn efficient rhodium-catalyzed coupling of N-phenoxyacetamides and nonterminal propargyl alcohols has been developed. A series of β-Alkyl 2-hydroxychalcones bearing diverse functional groups were obtained with excellent regio- and stereoselectivity, and the desired chalcones could then be converted to triazole and chromene smoothly.
View Article and Find Full Text PDFHigh Efficiency Video Coding (HEVC) significantly reduces bit-rates over the preceding H.264 standard but at the expense of extremely high encoding complexity. In HEVC, the quad-tree partition of coding unit (CU) consumes a large proportion of the HEVC encoding complexity, due to the brute-force search for rate-distortion optimization (RDO).
View Article and Find Full Text PDFThe vapor deposition of polymers on regular stationary substrates is widely known to form uniform thin films. Here we report porous polymer particles with sizes controllable down to the nanometer scale can be produced using a fabrication process based on chemical vapor deposition (CVD) on a dynamic substrate, i.e.
View Article and Find Full Text PDFAn advanced material interface is modified by using a substrate-independent coating of detachable poly-para-xylylene, enabling dynamical control of the immobilization and detachment of biomolecules, and a previously installed biological function is deactivated or tuned with reduced activity. The induction of osteogenesis activity, and subsequent deactivation of such osteogenesis activity, is demonstrated.
View Article and Find Full Text PDFIn addition to the widely adopted method of controlling cell attachment for cell patterning, pattern formation via cell proliferation and differentiation is demonstrated using precisely defined interface chemistry and spatial topology. The interface platform is created using a maleimide-functionalized parylene coating (maleimide-PPX) that provides two routes for controlled conjugation accessibility, including the maleimide-thiol coupling reaction and the thiol-ene click reaction, with a high reaction specificity under mild conditions. The coating technology is a prime tool for the immobilization of sensitive molecules, such as growth factor proteins.
View Article and Find Full Text PDFACS Biomater Sci Eng
August 2017
An advanced control of biomaterial surfaces was created to enable the stepwise and switchable activities of the immobilized growth factor (GF) proteins for a programmed manipulation over cell differentiation pathways. The GF protein was immobilized on an advanced vapor-based coating of poly[(4-2-amide-2'-amine-dithiobisethyl--xylylene)--(-xylylene)], and the equipped disulfide exchange mechanism of the coating enables the detachment and/or the displacement of the previously installed GF to reinstall a second GF protein. In this study, the controlled immobilization and displacement of the fibroblast growth factor (FGF-2) and bone morphogenetic protein (BMP-2) were demonstrated on cell culture substrates, and the resulting surfaces provided a programmable induction of cellular responses in proliferation and osteogenesis toward the cultured murine preosteoblasts (MC3T3-E1).
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2017
Multifunctional biomaterial surfaces can be created by controlling the competing adsorption of multiple proteins. To demonstrate this concept, bone morphogenetic protein 2 (BMP-2) and fibronectin were adsorbed to the hydrophobic surface of polychloro-para-xylylene. The resulting adsorption properties on the surface depended on the dimensional and steric characteristics of the selected protein molecule, the degree of denaturation of the adsorbed proteins, the associated adsorption of interphase water molecules within the protein layers, and the aggregation of proteins in a planar direction with respect to the adsorbent surface.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
December 2016
The immobilization of biofunctional molecules to biomaterial surfaces has enabled and expanded the versatility of currently available biomaterials to a wider range of applications. In addition, immobilized biomolecules offer modified surfaces that allow the use of smaller amounts of potentially harmful substances or prevent overdose, while the exhibited biological functions remain persistently effective. Surface concentrations of chlorhexidine (CHX) (1.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2016
Chemical or biological gradients that are composed of multifunctional and/or multidirectional guidance cues are of fundamental importance for prospective biomaterials and biointerfaces. As a proof of concept, a general modification approach for generating multifunctional and continuous gradients was realized via two controlled and reversed click reactions, namely, thermo-activated thiol-yne and copper-free alkyne and azide click reactions. The cell adhesion property of fibroblasts was guided in a gradient with an enhancement, showing that the PEG molecule and RGD peptide were countercurrently immobilized to form such reversed gradients (with negating of the cell adhesion property).
View Article and Find Full Text PDF