OsMYB1 negatively mediates rice resistance to brown planthopper and rice blight. Additionally, OsMYB1 interacts with OsSPL14 and antagonizes its function by oppositely regulating downstream resistance-related genes. In their natural habitats, plants are concurrently attacked by different biotic factors.
View Article and Find Full Text PDFBrown planthopper (BPH) is the most destructive insect pest of rice. Drought is the most detrimental environmental stress. BPH infestation causes adaxial leaf-rolling and bulliform cells (BCs) shrinkage similar to drought.
View Article and Find Full Text PDFManipulating grain size demonstrates great potential for yield promotion in cereals since it is tightly associated with grain weight. Several pathways modulating grain size have been elaborated in rice, but possible crosstalk between the ingredients is rarely studied. OsmiR396 negatively regulates grain size through targeting OsGRF4 (GS2) and OsGRF8, and proves to be multi-functioning.
View Article and Find Full Text PDFLeaf morphology is a crucial agronomic characteristic of rice that influences crop yield directly. One primary cause of rice leaf rolling can be attributed to alterations in bulliform cells. Several HD-ZIP IV genes have been identified to be epidemical characterized and function in leaf rolling in rice.
View Article and Find Full Text PDFBackground: The brown planthopper (BPH) is a kind of piercing-sucking insect specific to rice, with the damage tops the list of pathogens and insects in recent years. microRNAs (miRNAs) are pivotal regulators of plant-environment interactions, while the mechanism underlying their function against insects is largely unknown.
Results: Here, we confirmed that OsmiR319, an ancient and conserved miRNA, negatively regulated resistance to BPHs, with overexpression of OsmiR319 susceptible to BPH, while suppression of OsmiR319 resistant to BPH in comparison with wild type.
Brown planthopper (BPH) is the most destructive insect pest to rice that causes tremendous yield loss each year in rice planting Asia and South-East Asia areas. Compared with traditional chemical-based treatment, utilization of plant endogenous resistance is a more effective and environmental-friendly way for BPH control. Accordingly, quite a few quantitative trait loci (QTLs) for BPH resistance were cloned using forward genetics.
View Article and Find Full Text PDFThe brown planthopper (BPH) is the most destructive pest of rice. The MYB transcription factors are vital for rice immunity, but most are activators. Although MYB22 positively regulates rice resistance to BPH and has an EAR motif associated with active repression, it remains unclear whether it is a transcriptional repressor affecting rice-BPH interaction.
View Article and Find Full Text PDFMiR396s play important roles in regulating plant growth and stress response, and great potential for crop yield promotion was anticipated. For more comprehensive and precise understanding of miR396s in Poaceae, we analyzed the phylogenetic linkage, gene expression, and chromosomal distribution of miR396s in this study. Although the mature miR396s' sequences were mostly conserved, differential expression patterns and chromosomal distribution were found among Poaceae species including the major cereal crops rice, wheat, and maize.
View Article and Find Full Text PDFBrown planthopper (BPH) and blast disease jointly or individually cause big yield losses every year. To identify genes and metabolites with potential contributions to the dual resistance against both biotic-stress factors, we carried out a transcriptome and metabolome analysis for susceptible and resistant rice varieties after BPH and rice blast infestations. Coexpression network analysis identified a modular pattern that had the highest correlation coefficients (0.
View Article and Find Full Text PDFBackground: GROWTH-REGULATING FACTORs (GRFs), a type of plant-specific transcription factors, play important roles in regulating plant growth and development. Although GRF gene family has been identified in various plant species, a genome-wide analysis of this family in lettuce (Lactuca sativa L.) has not been reported yet.
View Article and Find Full Text PDFmicroRNAs (miRNAs) are promising targets for crop improvement of complex agricultural traits. Coordinated activity between/among different miRNAs may fine-tune specific developmental processes in diverse organisms. Grain size is a main factor determining rice (Oryza sativa L.
View Article and Find Full Text PDFEthylene (ET) and jasmonic acid (JA) play important roles in plant defenses against biotic stresses. Crosstalk between JA and ET has been well studied in mediating pathogen resistance, but its roles in piercing-sucking insect resistance are unclear. The brown planthopper (BPH; Nilaparvata lugens) is the most notorious piercing-sucking insect specific to rice (Oryza sativa) that severely affects yield.
View Article and Find Full Text PDFBackground: Rice (Oryza sativa) panicle architecture is the major determinant of the ideal plant architecture that directly influence yield potential. Many genes influencing development of primary branches, secondary branches, spikelet and pedicel would also influence panicle architecture, which is thus a complex trait regulated by genes from various aspects. miR156, an extensively studied miRNA, has recently emerged as promising target for crop improvement because of its role in plant architecture regulation, such as the number of tillers, plant height and the panicle architecture.
View Article and Find Full Text PDFIn the Supplementary Information file originally published with this Article, the authors mistakenly omitted accompanying legends for Supplementary Figures 1-15; this has now been amended.
View Article and Find Full Text PDFBreeding crops with resistance is an efficient way to control diseases. However, increased resistance often has a fitness penalty. Thus, simultaneously increasing disease resistance and yield potential is a challenge in crop breeding.
View Article and Find Full Text PDFBackground: In plants, basic helix-loop-helix (bHLH) proteins form the largest transcription factor (TF) family. Among them, HLH proteins are a small group of atypical members that lack the basic domain, and form dimers with bHLH proteins. Although bHLH proteins have been proved to play important roles in plant development and physiology, the function of HLH proteins is rarely studied, not to mention in plant biotic resistance.
View Article and Find Full Text PDFMulti-functional microRNAs (miRNAs) are emerging as key modulators of plant-pathogen interactions. Although the involvement of some miRNAs in plant-insect interactions has been revealed, the underlying mechanisms are still elusive. The brown planthopper (BPH) is the most notorious rice (Oryza sativa)-specific insect that causes severe yield losses each year and requires urgent biological control.
View Article and Find Full Text PDFExogenous dsRNA enters the insect body and can induce the RNAi effect only when it is cleaved into siRNA. However, what kinds of base composition are easier to cut and what kinds of siRNA will be produced is largely unknown. In this study, we found that dsRNA processing into siRNA has sequence preference and regularity in insects.
View Article and Find Full Text PDFTiller number and plant height are two of the main features of plant architecture that directly influence rice yield. Auxin and miR156, an extensively studied small RNA (smRNA), are both broadly involved in plant development and physiology, suggesting a possible relationship between the two. In this study, we identified a rice T-DNA insertion cluster and dwarf (cd) mutant that has an increased tiller number and reduced plant height.
View Article and Find Full Text PDFOsEXPA10 gene coordinates the balance between rice development and biotic resistance. Expansins are proteins that can loosen the cell wall. Previous studies have indicated that expansin-encoding genes were involved in defense against abiotic stress, but little is known about the involvement of expansins in biotic stress.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2018
The cereal crops (such as rice and maize) which belong to the grass family, are the most important grain crops for human beings, and the development of their flower and inflorescence architecture has attracted extensive attention. Although multiple genes involved in the regulation of floral and inflorescence organogenesis have been identified, the underlying molecular mechanisms are largely unknown. Previously, we identified rice depressed palea1 (dp1) mutants with defects in main structure of palea and its enhancer RETARDED PALEA1 (REP1).
View Article and Find Full Text PDFATP-dependent chromatin-remodeling factors use the energy of ATP hydrolysis to alter the structure of chromatin and are important regulators of eukaryotic gene expression. One such factor encoded by CHR5 (Chromatin-Remodeling Factor 5) in Arabidopsis (Arabidopsis thaliana) was previously found to be involved in regulation of growth and development. Here we show that CHR5 is required for the up-regulation of the intracellular immune receptor gene SNC1 (SUPPRESSOR OF npr1-1, CONSTITUTIVE1) and consequently the autoimmunity induced by SNC1 up-regulation.
View Article and Find Full Text PDFThe panicle architecture of rice is an important characteristic that influences reproductive success and yield. It is largely determined by the number and length of the primary and secondary branches. The number of panicle branches is defined by the inflorescence meristem state between determinacy and indeterminacy; for example, the maize () mutant has more branches in its tassel through loss of spikelet determinacy.
View Article and Find Full Text PDFCalcium signaling is essential for environmental responses including immune responses. Here, we provide evidence that the evolutionarily conserved protein BONZAI1 (BON1) functions together with autoinhibited calcium ATPase10 (ACA10) and ACA8 to regulate calcium signals in Arabidopsis. BON1 is a plasma membrane localized protein that negatively regulates the expression of immune receptor genes and positively regulates stomatal closure.
View Article and Find Full Text PDF