Publications by authors named "Zhenyang Qiao"

Fast spin-flipping is the key to exploit the triplet excitons in thermally activated delayed fluorescence based organic light-emitting diodes toward high efficiency, low efficiency roll-off and long operating lifetime. In common donor-acceptor type thermally activated delayed fluorescence molecules, the distribution of dihedral angles in the film state would have significant influence on the photo-physical properties, which are usually neglected by researches. Herein, we find that the excited state lifetimes of thermally activated delayed fluorescence emitters are subjected to conformation distributions in the host-guest system.

View Article and Find Full Text PDF

Versatile host materials with good chemical stability and carrier-transporting ability are quite responsible for achieving stable solution-processed thermally activated delayed fluorescence (TADF) organic light-emitting diodes (OLEDs). Herein, we reported three bipolar dendritic hosts with or without the electron-withdrawing pyridine moiety via 6-site-linkages, namely, 3,3'-bis(3,3″,6,6″-tetra--butyl-9'-[9,3':6',9″-tercarbazol]-9'-yl)-1,1'-biphenyl (mCDtCBP), 3,3″,6,6″-tetra--butyl-9'-(6-(3-(3,3″,6,6″-tetra--butyl-9'-[9,3':6',9″-tercarbazol]-9'-yl)phenyl)pyridine-2-yl)-9'-9,3':6',9″-tercarbazole (mCDtCBPy), and 6,6'-bis(3,3″,6,6″-tetra--butyl-9'-[9,3':6',9″-tercarbazol]-9'-yl)-2,2'-bipyridine (mCDtCBDPy), exhibiting outstanding solubility, thermal stability as well as electrochemical stability. According to the calculation of bond dissociation energy (BDE), photodegradation results, and carrier dynamics evaluation, a significant relationship between device stability and the pyridine-based dendritic hosts was uncovered.

View Article and Find Full Text PDF

A fast radiative rate, highly suppressed nonradiation, and a short exciton lifetime are key elements for achieving efficient thermally activated delayed fluorescence (TADF) organic light-emitting diodes (OLEDs) with reduced efficiency roll-off at a high current density. Herein, four representative TADF emitters are designed and synthesized based on the combination of benzophenone (BP) or 3-benzoylpyridine (BPy3) acceptors, with dendritic 3,3″,6,6″-tetra--butyl-9'-9,3':6',9″-tercarbazole (CDTC) or 10-spiro(acridine-9,9'-thioxanthene) (TXDMAc) donors, respectively. Density functional theory simulation and X-ray diffraction analysis validated the formation of CH···N intramolecular hydrogen bonds regarding the BPy3-CDTC and BPy3-TXDMAc compounds.

View Article and Find Full Text PDF

Thermally activated delayed fluorescent (TADF) materials generally suffer from severe concentration quenching. Efficient non-doped TADF emitters are generally highly twisted aromatic amine-based compounds with isolated chemical moieties. Herein we demonstrate that co-facial packing and strong π-π intermolecular interactions give rise to bright TADF emissions in non-doped film and crystalline states within the compound 2,4-diphenyl-6-(thianthren-1-yl)-1,3,5-triazine (oTE-DRZ).

View Article and Find Full Text PDF

The effect of boronic ester substitution on the room-temperature phosphorescence properties of phenoxathiine-based derivatives was thoroughly investigated. A significantly improved phosphorescence quantum efficiency of up to 20% in the crystalline state was achieved by delicate molecular manipulation for both enhanced spin-orbital coupling and compact intermolecular packing.

View Article and Find Full Text PDF

As one of the three primary colors that are indispensable in full-color displays, the development of red emitters is far behind the blue and green ones. Here, three novel orange-yellow to near-infrared (NIR) emitters based on 5,6-difluorobenzo[c][1,2,5]thiadiazole (BTDF) namely BTDF-TPA, BTDF-TTPA, and BTDF-TtTPA were designed and synthesized. Density functional theory analysis and photophysical characterization reveal that these three materials possess hybridized local and charge-transfer (HLCT) state feature and a feasible reverse intersystem crossing (RISC) from the high-lying triplet state to the singlet state may conduce to an exciton utilization exceeding the limit of 25% of traditional fluorescence materials under electrical excitation.

View Article and Find Full Text PDF