With climate change and intensified human activities, disasters such as heavy rainfall, flooding, typhoons, and storm surges are becoming more frequent, posing significant threats to lives, property, and economic development. We propose a method combining extreme value theory and probability distribution to examine the flood severity under the effect of strong human activities. By focusing on the Pearl River Delta (PRD), as one of the most populated areas of China, we quantified changes in the severity of extreme water level for different return levels between 1966 and 1990 and 1991-2016 (with strong human activities), associated with the spatial patterns over the PRD.
View Article and Find Full Text PDFThe interactions and collective impacts of different types of hazards within a compound hazard system, along with the influence of geographical covariates on flooding are presently unclear. Understanding these relationships is crucial for comprehending the formation and dynamic processes of the hazard chain and improving the ability to identify flood warning signals in complex hazard scenarios. In this study, we presented a multivariate spatial extreme value hierarchical (MSEVH) framework to assess the spatial extreme water levels (EWL) at different return levels under the influence of a hazard chain and geographical covariates.
View Article and Find Full Text PDF