The differentiation of embryonic stem cells (ESCs) begins with the transition from the naive to the primed state. The formative state was recently established as a critical intermediate between the two states. Here, we demonstrate the role of the histone chaperone FACT in regulating the naive-to-formative transition.
View Article and Find Full Text PDFOxid Med Cell Longev
October 2022
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative disorders of the central nervous system (CNS). Increasing evidence supports the view that dysfunction of innate immune cells initiated by accumulated and misfolded proteins plays essential roles in the pathogenesis and progression of these diseases. The TLR family was found to be involved in the regulation of microglial function in the pathogenesis and progression of AD or PD, making it as double-edged sword in these diseases.
View Article and Find Full Text PDFDeoxythymidine diphospho-l-rhamnose (dTDP-l-rhamnose) is used by prokaryotic rhamnosyltransferases as the glycosyl donor for the synthesis of rhamnose-containing polysaccharides and compounds that have potential in pharmaceutical development, so its efficient synthesis has attracted much attention. In this study, we successfully cloned four putative dTDP-l-rhamnose synthesis genes from CGMCC 4.1716 and expressed them in .
View Article and Find Full Text PDFFront Microbiol
October 2021
As a natural sweetening and solubilizing agent, rubusoside has great potential in the application of healthy beverages and pharmaceuticals. However, the direct extraction and purification of rubusoside from raw materials is inefficient. In this work, a novel β-glucosidase (BGL) was obtained from 1433 through screening of the environmental microorganisms.
View Article and Find Full Text PDFSingle-stranded DNA (ssDNA) covered with the heterotrimeric Replication Protein A (RPA) complex is a central intermediate of DNA replication and repair. How RPA is regulated to ensure the fidelity of DNA replication and repair remains poorly understood. Yeast Rtt105 is an RPA-interacting protein required for RPA nuclear import and efficient ssDNA binding.
View Article and Find Full Text PDFPhys Chem Chem Phys
May 2021
Proton transfer from Brønsted acid sites (BASs) to alcohol molecules ignites the acid-catalyzed alcohol dehydration reactions. For aqueous phase dehydration reactions in zeolites, the coexisting water molecules around BASs in the zeolite pores significantly affect the alcohol dehydration activity. In the present work, proton transfer processes among the BASs of H-BEA zeolites, the adsorbed cyclohexanol and surrounding water clusters with different sizes up to 8 water molecules were investigated using ab initio molecular dynamics (AIMD) simulations combined with the multiple-walker well-tempered metadynamics algorithm.
View Article and Find Full Text PDFBreak-induced replication (BIR) repairs one-ended double-strand breaks in DNA similar to those formed by replication collapse or telomere erosion, and it has been implicated in the initiation of genome instability in cancer and other human diseases. Previous studies have defined the enzymes that are required for BIR; however, understanding of initial and extended BIR synthesis, and of how the migrating D-loop proceeds through known replication roadblocks, has been precluded by technical limitations. Here we use a newly developed assay to show that BIR synthesis initiates soon after strand invasion and proceeds more slowly than S-phase replication.
View Article and Find Full Text PDFDNA double-strand break (DSB) end resection is an essential step for homologous recombination. It generates 3' single-stranded DNA needed for the loading of the strand exchange proteins and DNA damage checkpoint proteins. To study the mechanism of end resection in fission yeast, we apply a robust, quantitative and inducible assay.
View Article and Find Full Text PDFHyperuricemia is characterized by abnormally high level of circulating uric acid in the blood and is associated with increased risk of kidney injury. The pathophysiological mechanisms leading to hyperuricemic nephropathy (HN) involve oxidative stress, endothelial dysfunction, inflammation, and fibrosis. Mangiferin is a bioactive C-glucoside xanthone, which has been exerting anti-inflammatory, anti-fibrotic, and antioxidative effects in many diseases.
View Article and Find Full Text PDFAnn Clin Lab Sci
November 2019
Hyperuricemia (HUA) is positively correlated with the progression of cardiovascular and metabolic diseases. Anti-HUA drugs aim to either reduce uric acid production or promote uric acid excretion. Urate transporter 1 (URAT1) is a major urate transporter involved in renal uric acid reabsorption and excretion, making it an important anti-HUA drug target.
View Article and Find Full Text PDFInsertions of mobile elements, mitochondrial DNA and fragments of nuclear chromosomes at DNA double-strand breaks (DSBs) threaten genome integrity and are common in cancer. Insertions of chromosome fragments at V(D)J recombination loci can stimulate antibody diversification. The origin of insertions of chromosomal fragments and the mechanisms that prevent such insertions remain unknown.
View Article and Find Full Text PDFNon-homologous end joining (NHEJ) is a major pathway to repair DNA double-strand breaks (DSBs), which can display different types of broken ends. However, it is unclear how NHEJ factors organize to repair diverse types of DNA breaks. Here, through systematic analysis of the human NHEJ factor interactome, we identify PAXX as a direct interactor of Ku.
View Article and Find Full Text PDFSomatostatin receptors (SSTRs) are proposed to mediate the actions of somatostatin (SST) and its related peptide, cortistatin (CST), in vertebrates. However, the identity, functionality, and tissue expression of these receptors remain largely unknown in most non-mammalian vertebrates including birds. In this study, five SSTRs (named cSSTR1, cSSTR2, cSSTR3, cSSTR4, cSSTR5) were cloned from chicken brain by RT-PCR.
View Article and Find Full Text PDFIgD has been found in almost all jawed vertebrates, including cartilaginous and teleost fish. However, IgD is missing in acipenseriformes, a branch that is evolutionarily positioned between elasmobranchs and teleost fish. Here, by analyzing transcriptome data, we identified a transcriptionally active IgD-encoding gene in the Siberian sturgeon (Acipenser baerii).
View Article and Find Full Text PDF