Publications by authors named "Zhenxiao Cai"

Pharmaceuticals have been detected at high concentrations in municipal solid waste (MSW) landfill leachates, which are recognized as an underestimated source of pharmaceutical residues in the environment. However, limited efforts have been made to characterize pharmaceuticals in MSW landfill refuse, which is also of significant concern given the potential long-term environmental impact. Herein, we excavated landfill refuse from six cells with landfill ages of 7-27 years in the largest MSW landfill in Shanghai (in each cell, landfill refuse was collected from different depths of 2-8 m) and analyzed samples for the presence of 55 pharmaceuticals, including antibiotics and non-antibiotics.

View Article and Find Full Text PDF

Pharmaceutical and personal care products (PPCPs) have been the focus of increasing concern in recent decades due to their ubiquity in the environment and potential risks. Out-of-date PPCPs are usually discharged into municipal solid wastes (MSWs), enter the leachates in MSW landfills, and have serious adverse effects on the surrounding water environment. However, the occurrence and removal of PPCPs from landfill leachates have rarely been examined to date.

View Article and Find Full Text PDF

Irreversible fouling of water filtration membranes reduces filter longevity and results in higher costs associated with membrane maintenance and premature replacement. The search for effective pretreatment methods to remove foulants that tend to irreversibly foul membranes is ongoing. In this study, a novel adsorbent (Heated Aluminum Oxide Particles (HAOPs)) was deployed in a fully automated pilot system to remove natural organic matter (NOM) from the surface water source used at the UniVann water treatment plant (WTP) in Ullensaker County, Norway.

View Article and Find Full Text PDF

This study presents the viability and preference of capacitive deionization (CDI) for removing different heavy metal ions in various conditions. The removal performance and mechanisms of three ions, cadmium (Cd(2+)), lead (Pb(2+)) and chromium (Cr(3+)) were investigated individually and as a mixture under different applied voltages and ion concentrations. It was found that CDI could effectively remove these metals, and the performance was positively correlated with the applied voltage.

View Article and Find Full Text PDF

High-performance liquid chromatography-size exclusion chromatography (HPLC-SEC) coupled with a multiple wavelength absorbance detector (200-445 nm) was used in this study to investigate the apparent molecular weight (AMW) distributions of dissolved organic matter (DOM). Standard DOM, namely humic acid, fulvic acid and hydrophilic acid, from the Suwannee River were tested to ascertain the performance and sensitivity of the method. In addition to four compounds groups: humic substances (Peak 1, AMW 16 kD), fulvic acids (Peak 2, AMW 11 kD), low AMW acids (Peak 3, AMW 5 kD), and low AMW neutral and amphiphilic molecules, proteins and their amino acid building blocks (Peak 4, AMW 3 kD), an new group that appears to include low AMW, 6-10 kD, humic substances was found based on investigating the spectra at various elution times.

View Article and Find Full Text PDF

Membrane fouling by natural organic matter (NOM) was investigated in microgranular adsorptive filtration (μGAF) systems, in which a thin layer of adsorbent is predeposited on low-pressure membranes. The adsorbents tested included heated aluminum oxide particles (HAOPs), ion exchange (IX) resin, and powdered activated carbon (PAC). Size exclusion chromatography (SEC) separated the NOM into four apparent MW fractions with significant UV₂₅₄.

View Article and Find Full Text PDF

Heated aluminum oxide particles (HAOPs) are a newly synthesized adsorbent with attractive properties for use in hybrid adsorption/membrane filtration systems. This study compared removal of natural organic matter (NOM) from water by adsorption onto HAOPs with that by adsorption onto powdered activated carbon (PAC) or coagulation with alum or ferric chloride (FeCl3); explored the overlap between the NOM molecules that preferentially adsorb to HAOPs and those that are removed by the more conventional approaches; and evaluated NOM removal and fouling in hybrid adsorbent/membrane systems. For equivalent molar doses of the trivalent metals, HAOPs remove more NOM, and NOM with higher SUVA254, than alum or FeCl3.

View Article and Find Full Text PDF