Publications by authors named "Zhenwu Zhou"

In response to the dangerous behavior of pedestrians roaming freely on unsupervised train tracks, the real-time detection of pedestrians is urgently required to ensure the safety of trains and people. Aiming to improve the low accuracy of railway pedestrian detection, the high missed-detection rate of target pedestrians, and the poor retention of non-redundant boxes, YOLOv5 is adopted as the baseline to improve the effectiveness of pedestrian detection. First of all, L1 regularization is deployed before the BN layer, and the layers with smaller influence factors are removed through sparse training to achieve the effect of model pruning.

View Article and Find Full Text PDF