Publications by authors named "Zhenrui Qiao"

Dual-acting drugs that simultaneously inhibit fatty acid amide hydrolase (FAAH) and antagonize the transient receptor potential vanilloid 1 (TRPV1) is a promising stronger therapeutic approach for pain management without side effects associated with single-target agents. Here, several series of dual FAAH/TRPV1 blockers were designed and synthesized through rational molecular hybridization between the pharmacophore of classical TRPV1 antagonists and FAAH inhibitors. The studies resulted in compound 2r, which exhibited strong dual FAAH/TRPV1 inhibition/antagonism in vitro, exerted powerful analgesic effects in formalin-induced pain test (phase II, in mice), desirable anti-inflammatory activity in carrageenan-induced paw edema in rats, no TRPV1-related hyperthermia side effect, and favorable pharmacokinetic properties.

View Article and Find Full Text PDF

Transient receptor potential vanilloid 1 (TRPV1) antagonists can inhibit the transmission of nociceptive signals from the peripheral to the central nervous system (CNS), providing a new strategy for pain relief. In this work, in order to develop potent, CNS-penetrant, and orally available TRPV1 antagonists, three series of novel molecules based on the key pharmacophore structures of classic TRPV1 ligands SB-705498 and MDR-652 were designed and synthesized. Through systematic in vitro and in vivo bioassays, (S)-N-(3-isopropylphenyl)-2-(5-phenylthiazol-2-yl)pyrrolidine-1-carboxamide (7q) was finally identified, which had enhanced TRPV1 antagonistic activity (IC (capsaicin) = 2.

View Article and Find Full Text PDF

Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel with high permeability to Ca, which can be activated by low pH, noxious heat and vanilloid compounds such as capsaicin. TRPV1 has been proved to be very important in the process of pain production and is considered to be a highly effective analgesic target. In this work, three series of new piperazine urea TRPV1 antagonists were designed, synthesized and evaluated based on classical TRPV1 antagonists BCTC and GRT12360.

View Article and Find Full Text PDF

: Transient receptor potential vanilloid 1 (TRPV1) is a nonselective cation channel with high permeability to calcium, which is widely expressed in the central nervous system (CNS) and peripheral nervous system. Since the TRPV1 was molecularly cloned more than 20 years ago, a series of research activities have been carried out on the possibility of new drugs. : This review summarizes the patents on TRPV1 regulators (including agonists and antagonists) that were published during 2014-present and predicts the development direction in the future.

View Article and Find Full Text PDF

N-(4-Tert-butylphenyl)-4-(3-chloropyridin-2-yl) piperazine-1-carboxamide (BCTC) is a potent and extensively studied urea-based TRPV1 antagonist. Although BCTC was effective in alleviating chronic pain in rats, it showed obvious hyperthermia side-effect and unsatisfactory pharmacokinetic profile, therefore, it was not developed further. In order to enrich the structural types of urea-based TRPV1 antagonists, two series of novel analogs, in which the pyridine ring of BCTC was replaced with a mildly basic pyrimidine ring or 1,2,3,4-tetrahydro-β-carboline scaffold, were designed and synthesized.

View Article and Find Full Text PDF