Publications by authors named "Zhenru Hu"

Numerous members of the family Picornaviridae, such as the Senecavirus A (SVA) and foot-and-mouth disease virus (FMDV), exhibit thermal instability, resulting in the dissociation of viral particles, which affects the insufficient potency of the vaccine. Based on this characteristic, this study aimed to maintain the thermal stability of SVA by supplementing it with a stabilizer. Excipients, such as sucrose, mannitol, sorbitol, polyethylene glycol (PEG), L-arginine (L-Arg), glutamic acid (Glu), polyvinyl pyrrolidone (PVP), bovine serum albumin (BSA), and potassium chloride (KCl) dissolved in Tris-HCl buffer solution, retained the infectivity of SVA in the thermostability assay.

View Article and Find Full Text PDF

Background: Senecavirus A (SVA), a member of the family , is newly discovered, which causes vesicular lesions, lameness in swine, and even death in neonatal piglets. SVA has rapidly spread worldwide in recent years, especially in Asia.

Objectives: We conducted a global meta-analysis and systematic review to determine the status of SVA infection in pigs.

View Article and Find Full Text PDF

Pullorum disease (PD), caused by the bacterium Salmonella pullorum, severely threatens the health of chickens worldwide, especially in China, and generating concerns for public health safety. Greater awareness of the seroprevalence may facilitate the prevention and control of this disease. We conducted systematic review and meta-analysis on the seroprevalence of PD in chicken flocks across mainland China.

View Article and Find Full Text PDF

Synonymous codon bias in the viral genome affects protein translation and gene expression, suggesting that the synonymous codon mutant plays an essential role in influencing virulence and evolution. However, how the recessive mutant form contributes to virus evolvability remains elusive. In this paper, we characterize how the Senecavirus A (SVA), a picornavirus, utilizes synonymous codon mutations to influence its evolution, resulting in the adaptive evolution of the virus to adverse environments.

View Article and Find Full Text PDF