Inspired by nature, functionalized nanopores with biomimetic structures have attracted growing interests in using them as novel platforms for applications of regulating ion and nanoparticle transport. To improve these emerging applications, we study theoretically for the first time the ion transport and selectivity in short nanopores functionalized with pH tunable, zwitterionic polyelectrolyte (PE) brushes. In addition to background salt ions, the study takes into account the presence of H(+) and OH(-) ions along with the chemistry reactions between functional groups on PE chains and protons.
View Article and Find Full Text PDFInspired by ion channels in biological cells where the intracellular and extracellular ionic concentrations are typically different, a salt concentration gradient through a charged nanopore is proposed to actively regulate its ion transport and selectivity. Results obtained show that, in addition to the ion current rectification phenomenon, a reversed ion selectivity of the nanopore occurs when the concentration gradient is sufficiently large. In addition, if the directions of the applied concentration gradient and electric field are identical, a reversed magnified electric field occurs near the cathode side of the nanopore.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2014
Under an AC electric field, individual particles in close proximity induce spatially non-uniform electric field around each other, accordingly resulting in mutual dielectrophoretic (DEP) forces on these particles. The resulting attractive DEP particle-particle interaction could assemble individual colloidal particles or biological cells into regular patterns, which has become a promising bottom-up fabrication technique for bio-composite materials and microscopic functional structures. In this study, we developed a transient multiphysics model under the thin electric double layer (EDL) assumption, in which the fluid flow field, AC electric field and motion of finite-size particles are simultaneously solved using an Arbitrary Lagrangian-Eulerian (ALE) numerical approach.
View Article and Find Full Text PDFPhys Chem Chem Phys
February 2014
Mimicking biological ion channels capable of pH-regulated ionic transport, synthetic nanopores functionalized with pH-tunable polyelectrolyte (PE) brushes have been considered as versatile tools for active transport control of ions, fluids, and bioparticles on the nanoscale. The ionic current rectification (ICR) phenomenon through a conical nanopore functionalized with PE brushes whose charge highly depends upon the local solution properties (i.e.
View Article and Find Full Text PDF