Background Context: Spinal cord injury (SCI) causes neural circuit interruption and permanent functional damage. Magnetic stimulation in humans with SCI aims to engage residual neural networks to improve neurological functional, but the detailed mechanism remains unknown.
Purpose: This study evaluates functional recovery and neural circuitry improvements in rodent with double-target (brain and spinal cord) magnetic stimulation (DTMS) treatment and explores the effect of DTMS on the modulation of glial cells in vivo and in vitro.
In the realm of neural regeneration post-spinal cord injury, hydrogel scaffolds carrying induced neural stem cells (iNSCs) have demonstrated significant potential. However, challenges such as graft rejection and dysfunction caused by mitochondrial damage persist after transplantation, presenting formidable barriers. Tacrolimus, known for its dual role as an immunosuppressant and promoter of neural regeneration, holds the potential for enhancing iNSC transplantation.
View Article and Find Full Text PDFObjectives: This study investigated the genotype-specific dynamics of molecular HIV clusters (MHCs) in Guangzhou, China, aiming to enhance HIV control.
Methods: HIV pol sequences from people with HIV (PWH) in Guangzhou (2008-2020) were obtained for genotyping and molecular network creation. MHCs were identified and categorized into three types: emerging, growing, or stable.
Aims: Spinal cord injury (SCI) is a devastating neurological disease that often results in tremendous loss of motor function. Increasing evidence demonstrates that diabetes worsens outcomes for patients with SCI due to the higher levels of neuronal oxidative stress. Mammalian sterile 20-like kinase (MST1) is a key mediator of oxidative stress in the central nervous system; however, the mechanism of its action in SCI is still not clear.
View Article and Find Full Text PDFSpinal cord injury (SCI) can cause severe and permanent neurological damage, and neuronal apoptosis could inhibit functional recovery of damaged spinal cord greatly. Human umbilical cord mesenchymal stem cells (hUC-MSCs) have great potential to repair SCI because of a series of advantages, including inhibition of neuronal apoptosis and multiple differentiation. The former may play an important role.
View Article and Find Full Text PDFObjective: This study assesses the diagnostic delay, treatment duration and treatment outcomes of tuberculosis (TB) patients since the implementation of the integrated model of TB control in a county in eastern China. It further identifies factors associated with diagnostic delay and treatment duration in the integrated model.
Methods: We collected data through the Chinese Tuberculosis Information Management System (TBIMS) for Cangnan County in Zhejiang Province.
Background: The brain vascular basement membrane (brain-VBM) is an important component of the brain extracellular matrix, and the three-dimensional structure of the cerebrovascular network nested with many cell-adhesive proteins may provide guidance for brain tissue regeneration. However, the potential of ability of brain-VBM to promote neural tissue regeneration has not been examined due to the technical difficulty of isolating intact brain-VBM.
Methods: The present study developed a simple, effective method to isolate structurally and compositionally intact brain-VBM.
Spinal cord injury (SCI) results in massive neuronal death, axonal disruption, and cascading inflammatory response, which causes further damage to impaired neurons. The survived neurons with damaged function fail to form effective neuronal circuits. It is mainly caused by the neuroinflammatory microenvironment at injury sites and regenerated axons without guidance.
View Article and Find Full Text PDFNeuromyelitis optica spectrum disorder (NMOSD) is a severe inflammatory autoimmune disease of the central nervous system that is manifested as secondary myelin loss. Oligodendrocyte progenitor cells (OPCs) are the principal source of myelinating oligodendrocytes (OLs) and are abundant in demyelinated regions of NMOSD patients, thus possibly representing a cellular target for pharmacological intervention. To explore the therapeutic compounds that enhance myelination due to endogenous OPCs, we screened the candidate drugs in mouse neural progenitor cell (NPC)-derived OPCs.
View Article and Find Full Text PDFObjective: Umbilical cord mesenchymal stem cells (UCMSCs) have great potential in the treatment of spinal cord injury. However, the specific therapeutic effect and optimal transplantation strategy are still unclear. Therefore, exploring the optimal treatment strategy of UCMSCs in animal studies by systematic review can provide reference for the development of animal studies and clinical research in the future.
View Article and Find Full Text PDFConductive scaffolds have been shown to exert a therapeutic effect on patients suffering from peripheral nerve injuries (PNIs). However, conventional conductive conduits are made of rigid structures and have limited applications for impaired diabetic patients due to their mechanical mismatch with neural tissues and poor plasticity. We propose the development of biocompatible electroconductive hydrogels (ECHs) that are identical to a surgical dressing in this study.
View Article and Find Full Text PDFBackground: Exosomes derived from the bone marrow mesenchymal stem cell (MSC) have shown great potential in spinal cord injury (SCI) treatment. This research was designed to investigate the therapeutic effects of miR-26a-modified MSC-derived exosomes (Exos-26a) following SCI.
Methods: Bioinformatics and data mining were performed to explore the role of miR-26a in SCI.
Mol Ther Nucleic Acids
December 2020
Emerging evidence indicates that microRNAs play a pivotal role in neural remodeling after spinal cord injury (SCI). This study aimed to investigate the mechanisms of miR-135a-5p in regulating the functional recovery of SCI by impacting its target genes and downstream signaling. The gene transfection assay and luciferase reporter assay confirmed the target relationship between miR-135a-5p and its target genes (specificity protein 1 [SP1] and Rho-associated kinase [ROCK]1/2).
View Article and Find Full Text PDFFunctional multipotency renders human umbilical cord mesenchymal stem cell (hUC-MSC) a promising candidate for the treatment of spinal cord injury (SCI). However, its safety and efficacy have not been fully understood for clinical translation. In this study, we performed cellular, kinematic, physiological, and anatomical analyses, either in vitro or in vivo, to comprehensively evaluate the safety and efficacy associated with subarachnoid transplantation of hUC-MSCs in rats with subacute incomplete SCI.
View Article and Find Full Text PDFBackground: This study aimed to investigate the effect of bone marrow mesenchymal stem cell (BMSC)-derived exosome injection on cartilage damage and pain relief in both in vitro and in vivo models of osteoarthritis (OA).
Methods: The BMSCs were extracted from rat bone marrow of the femur and tibia. Chondrocytes were treated with IL-1β to establish the in vitro model of OA.
This study aims to investigate the genetic and epigenetic mechanisms involved in the pathogenesis of subacute stage of spinal cord injury (SCI). Gene-expression datasets associated with SCI were downloaded from the Gene Expression Omnibus (GEO) database, and differential expression analyses were performed in order to identify differentially expressed genes (DEGs). Multiple network types were constructed and analyzed, including protein-protein-interaction (PPI) network, miRNA-target network, lncRNA-associated competing endogenous RNA (ceRNA) network, and miRNA-transcription factor (TF)-target network.
View Article and Find Full Text PDF