Publications by authors named "Zhenmin Wang"

Transcription factor Foxk1 can regulate cell proliferation, differentiation, metabolism, and promote skeletal muscle regeneration and cardiogenesis. However, the roles of Foxk1 in bone formation is unknown. Here, we found that Foxk1 expression decreased in the bone tissue of aged mice and osteoporosis patients.

View Article and Find Full Text PDF

Background: Mild cognitive impairment (MCI) is a critical transitional phase from healthy cognitive aging to dementia, offering a unique opportunity for early intervention. However, few studies focus on the correlation of brain structure and functional activity in patients with MCI due to Alzheimer's disease (AD). Elucidating the complex interactions between structural-functional (SC-FC) brain connectivity and glymphatic system function is crucial for understanding this condition.

View Article and Find Full Text PDF

Objective: To investigate the visual outcomes and optimal timing for repeat surgery in cases of postoperative hematoma following transsphenoidal surgery for pituitary neuroendocrine tumors (PitNETs).

Methods: A retrospective study was conducted on 28 patients who developed evident postoperative hematoma out of a total of 9,010 patients. The hematomas were classified into three types based on their CT appearance.

View Article and Find Full Text PDF

Background: NF2-schwannomatosis (NF2) is an autosomal dominant disorder prone to hearing loss. Auditory brainstem implants (ABIs) offer a promising solution for hearing rehabilitation in NF2.

Objective: To synthesize existing literature on ABI implantation in NF2, focusing on audiological outcomes and ABI-related complications.

View Article and Find Full Text PDF

This study used simulation software and experiments to analyze the microstructure and texture of FH36 ship plate steel at different thicknesses and temperatures. The austenite phase transformed into ferrite phase at 830 °C and MC and MC phases precipitated at 1150 °C and 543 °C, respectively. At room temperature, the microstructure at the surface and 1/4 thickness consisted of polygonal ferrite, acicular ferrite and granular bainite, while the 1/2 thickness had less acicular ferrite and granular bainite.

View Article and Find Full Text PDF

The application of carbon-fiber-reinforced thermoplastic (CFRTP)/metal hybrid structures is a vital step for realizing the lightweight design concepts in aerospace. However, the CFRTP/metal hybrid structures are usually not reliable enough in practical applications due to the high differences in chemical and physical properties between these two materials. The current work provides a bottom-up strategy of introducing heteroatoms into CFRTP/metal interfaces to reconstruct the interfacial chemical structures and thus manufacture high-reliability hybrid structures.

View Article and Find Full Text PDF

Dysregulation of bone homeostasis is closely related to the pathogenesis of osteoporosis. Suppressing bone resorption by osteoclasts to attenuate bone loss has been widely investigated, but far less effort has been poured toward promoting bone formation by osteoblasts. Here, we aimed to explore magnesium ascorbyl phosphate (MAP), a hydrophilic and stable ascorbic acid derivative, as a potential treatment option for bone loss disorder by boosting osteoblastogenesis and bone formation.

View Article and Find Full Text PDF

Purpose: To evaluate the correlation between microvascular density (MVD) and intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) parameters and the effect of glycolytic flux after transarterial chemoembolization (TACE) in a rabbit VX2 liver tumor.

Materials And Methods: VX2 liver tumor allografts in 15 New Zealand white rabbits were treated with sterile saline (control group, n = 5) or lipiodol-doxorubicin emulsion (experimental group, n = 10). MRI was performed 2 weeks after the procedure to evaluate IVIM parameters, including apparent diffusion coefficient (ADC), pure diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (PF).

View Article and Find Full Text PDF

Background: Vascular calcification is a major cause of the high morbidity and mortality of cardiovascular diseases and is closely associated with the intestinal microbiota. Short-chain fatty acids (SCFAs) are derived from the intestinal microbiota and can also regulate intestinal microbiota homeostasis. However, it remains unclear whether exogenous supplementation with propionate, a SCFA, can ameliorate vascular calcification by regulating the intestinal microbiota.

View Article and Find Full Text PDF

Metal-thermoplastic hybrid structures have proven their effectiveness to achieve lightweight design concepts in both primary and secondary structural components of advanced aircraft. However, the drastic differences in physical and chemical properties between metal and thermoplastic make it challenging to fabricate high-reliability hybrid structures. Here, a simple and universal strategy to obtain strong hybrid structures thermoplastics is reported by regulating the bonding behavior at metal/thermoplastic interfaces.

View Article and Find Full Text PDF

Postmenopausal osteoporosis is a common bone metabolic disorder characterized by deterioration of the bone microarchitecture, leading to an increased risk of fractures. Recently, circular RNAs (circRNAs) have been demonstrated to play pivotal roles in regulating bone metabolism. However, the underlying functions of circRNAs in bone metabolism in postmenopausal osteoporosis remain obscure.

View Article and Find Full Text PDF

We previously showed that wound-induced hypoxia is related to keratinocyte migration. The ability of keratinocytes within wound healing to undergo epithelial to mesenchymal transition (EMT) contributes significantly to the acquisition of migratory properties. However, the effect of hypoxia on keratinocyte EMT on wound healing and the potential mechanism are poorly documented.

View Article and Find Full Text PDF

Bone remodeling is a dynamic process between bone formation mediated by osteoblasts and bone resorption mediated by osteoclasts. Disrupted bone remodeling is a key factor in postmenopausal osteoporosis, a metabolic disorder characterized by deteriorated bone microarchitecture and increased risk of fracture. Recent studies have shown that piwi-binding RNA (piRNA) is involved in the pathogenesis of certain diseases at the post-transcriptional level.

View Article and Find Full Text PDF

Scaffolds functionalized with bone morphogenetic protein-2 (BMP-2) have shown great potential for bone regeneration. However, structural instability and the necessity for supra-physiological dose have thus far limited practical applications for BMP-2. Protein modification and site-specific covalent immobilization of BMP-2 to carrier materials might be optimal strategies to overcome these problems.

View Article and Find Full Text PDF

Interfacial structures govern the reliability of metal-thermoplastic hybrid joints used in the aerospace industry. The current work demonstrated by experimental methods and density functional theory (DFT) calculations that introduction of carbon fibers (CFs) enhanced the mechanical properties and weakened the corrosion resistance of polyamide 6 (PA6)/A6061-T6 (6061) joints. The bonding strength of typical PA6/6061 joints was increased by 33.

View Article and Find Full Text PDF

The development of recombinant protein cross-linked injectable hydrogels with good mechanical strength and effective drug loading capacity for bone regeneration is extremely attractive and rarely reported. Here, we report the fabrication of a smart hydrogel delivery system by incorporating a rationally designed T4 lysozyme mutant (T4M) to mediate the localized delivery and synergistic release of Mg and Zn for bone repair. Apart from its intrinsic antibacterial properties, T4M bears abundant free amine groups on its surface to function as effective covalent crosslinkers to strengthen the hydrogel network as well as exhibits specific binding affinity to multivalent cations such as Zn.

View Article and Find Full Text PDF

Background: Adult posterior fossa ependymomas (PF-EPN) with preoperative cerebrospinal metastases are extremely rare. Only 3 cases have been reported in previous literature.

Case Presentation: A case of a 32-year-old male patient complained of headaches for three months.

View Article and Find Full Text PDF

Objective: Although bilateral vestibular schwannomas (VSs) in individual NF2 patients have the same NF2 gene mutation, they often show different growth patterns. We attempted to identify factors associated with this growth pattern inconsistency.

Patients And Methods: Cranial MR images of 120 untreated VSs in 60 NF2 patients were carefully reviewed for their growth rates.

View Article and Find Full Text PDF

Background: Gastric cancer (GC) is the most commonly diagnosed malignancy worldwide. Increasing evidence suggests that it is necessary to further explore genetic and immunological characteristics of GC.

Aim: To construct an immune-related gene (IRG) signature for accurately predicting the prognosis of patients with GC.

View Article and Find Full Text PDF

Objective: NF2 patients can develop new meningiomas throughout their lifetime. Little is known about the clinical features of newly developed NF2 meningiomas. In this study, we analyzed newly developed NF2 meningiomas in a large patient population.

View Article and Find Full Text PDF

Cognitive dysfunction accompanied by neurofibromatosis type 1 is one of the significant characteristics of this neurocutaneous disorder and has a serious impact on patients' quality of life. Although studies on cognitive function in children with neurofibromatosis type 1 have revealed that attentional impairment is a key deficit in these patients, few studies have examined their neuropsychological profile, especially whether the attentional function is also abnormal and specific in adult patients with neurofibromatosis type 1. In this study, we used the revised attention network test to examine the function of three attentional networks-alerting, orienting and executive control-in 20 adult patients with neurofibromatosis type 1 in comparison to 20 normal controls.

View Article and Find Full Text PDF

miR-3188, one of the earliest discovered microRNAs, is involved in regulating the mTOR-p-PI3K/AKT pathway, thus affecting the progression of diabetic complications. In this study, we observed that the miR-3188 (rs7247237-C>T) polymorphism not only affected the production of nitric oxide (NO) production in endothelial cells, but also significantly associated with the incidence of vascular complications in Chinese patients with type 2 diabetes. Mechanistic analyses indicate that miR-3188 (rs7247237-T) polymorphism inhibited its own expression and upregulated the expression of gstm1 and trib3, which impairs NO production in human endothelial cells through inactivating AKT/eNOS signal transduction pathway.

View Article and Find Full Text PDF

Type 2 diabetes mellitus is a complex disease. Our previous study revealed that genetic variations were strongly associated with diabetic vascular complications, although regulation pathways remain poorly understood. We used two extreme treatment groups from a 2 × 2 factorial randomized controlled trial to identify a positive association, which was further validated in patients receiving cross treatment to test the effect of genetic polymorphisms among the different treatment groups.

View Article and Find Full Text PDF

Forkhead box R2 (FOXR2), a new member of the FOX family, is an important player in a wide range of cellular processes such as proliferation, migration, differentiation and apoptosis. Recently, FOXR2 has been reported to be implicated in cancer development. However, the biological functions of FOXR2 in non-small cell lung cancer (NSCLC) remain unclear.

View Article and Find Full Text PDF