Steady glacier runoff is related to the security and resilience of water resources in meltwater recharge basins, so the status and change of glaciers and their response to climate change in the upper reaches have received widespread concerns. Here, the spatiotemporal characteristics of glacier wastage in the Upper Reaches of Shule River Basin (URSRB) driven by climate change were analyzed based on multi-source and multi-temporal remotely sensed images. Firstly, we extracted multi-temporal glacier outlines from the Landsat time series data using Google Earth Engine (GEE) for seven different periods every approximately 5 years from 1990 to 2020.
View Article and Find Full Text PDFRecharge sources such as precipitation, mountain front recharge, mountain block recharge and confined water are the sources usually considered in quantitative studies of groundwater recharge. Changes in recharge processes caused by irrigation practices need to be fully considered for the accurate budgeting and management of water resources. Here, we put forward a conceptual framework for evaluating the shallow groundwater recharge process in arid irrigated agricultural areas using hydrochemical and stable isotope techniques, combined with an assessment of hydrogeological conditions and quantitative models.
View Article and Find Full Text PDFForecasting river water levels or streamflow water levels (SWL) is vital to optimising the practical and sustainable use of available water resources. We propose a new deep learning hybrid model for SWL forecasting using convolutional neural networks (CNN), bi-directional long-short term memory (BiLSTM), and ant colony optimisation (ACO) with a two-phase decomposition approach at the 7-day, 14-day, and 28-day forecast horizons. The newly developed CBILSTM method is coupled with complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and variational mode decomposition (VMD) methods to extract the most significant features within predictor variables to build a hybrid CVMD-CBiLSTM model.
View Article and Find Full Text PDFAs the hydrologic buffering capacity of glaciers diminishes on climate warming, groundwater stored in the glaciated alpine watersheds becomes an important source of streamflow, quantifying the groundwater contribution to this streamflow is significant for better predictions of the impact of rapidly disappearing glaciers on regional water resources. However, the role of groundwater in sustaining streams remains unclear. Here, we selected the upper Shule River Basin (USRB) on the northeast Tibetan Plateau (NETP) as a case to address this knowledge gap through a comprehensive study of geochemistry and stable isotopes data, the application of an end member mixing model and the baseflow hydrograph separation program (HYSEP).
View Article and Find Full Text PDFTerrestrial evapotranspiration (ET) reflects the complex interactions of climate, vegetation, soil and terrain and is a critical component in water and energy cycles. However, the manner in which climate change and vegetation greening influence ET remains poorly understood, especially in alpine regions. Drawing on the Global Land Evaporation Amsterdam Model (GLEAM) ET data, the interannual variability of ET and its ties to precipitation (P), potential evaporation (ET) and vegetation (NDVI) were analysed.
View Article and Find Full Text PDFThe relationship between climate and human society has frequently been investigated to ascertain whether climate variability can trigger social crises (e.g., migration and armed conflicts).
View Article and Find Full Text PDFThere are few studies on the hydrological characteristics on the landscape zone scale in alpine cold region at present. This paper aimed to identify the spatial and temporal variations in the origin and composition of the runoff, and to reveal the hydrological characteristics in each zone, based on the isotopic analysis of glacier, snow, frozen soil, groundwater, etc. The results showed that during the wet season, heavy precipitation and high temperature in the Mafengou River basin caused secondary evaporation which led to isotope fractionation effects.
View Article and Find Full Text PDFThere are many viewpoints about the sources of groundwater in the Badain Jaran Desert (BJD), such as precipitation and snowmelt from the Qilian Mountains (the upper reaches [UR] of the Heihe River Basin [HRB]) and precipitation from the BJD and the Yabulai Mountains. To understand the source of the groundwater of the BJD and their possible associations with nearby bodies of water, we analyzed variations of stable isotope ratios (δD and δ(18) O) and the deuterium excess (d-excess) of groundwater and precipitation in the BJD, of groundwater, precipitation, river and spring water in the UR, and of groundwater and river water in the middle and lower reaches (MR and LR) of the HRB. In addition, the climatic condition under which the groundwater was formed in the BJD was also discussed.
View Article and Find Full Text PDF