Animal models are crucial for elucidating the pathological mechanisms underlying Parkinson's disease (PD). Unfortunately, most of transgenic mouse models fail to manifest pathological changes observed in PD patients, pending the advancement of PD research. However, the mechanism underlying this discrepancy remains elusive.
View Article and Find Full Text PDFEndocytosis is a fundamental biological process that couples exocytosis to maintain the homeostasis of the plasma membrane and sustained neurotransmission. Super-resolution microscopy enables optical imaging of exocytosis and endocytosis in live cells and makes an essential contribution to understanding molecular mechanisms of endocytosis in neuronal somata and other types of cells. However, visualization of exo-endocytic events at the single vesicular level in a synapse with optical imaging remains a great challenge to reveal mechanisms governing the synaptic exo-endocytotic coupling.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2022
Exocytosis and endocytosis are tightly coupled. In addition to initiating exocytosis, Ca2+ plays critical roles in exocytosis–endocytosis coupling in neurons and nonneuronal cells. Both positive and negative roles of Ca2+ in endocytosis have been reported; however, Ca2+ inhibition in endocytosis remains debatable with unknown mechanisms.
View Article and Find Full Text PDFNeuronal communication and brain function mainly depend on the fundamental biological events of neurotransmission, including the exocytosis of presynaptic vesicles (SVs) for neurotransmitter release and the subsequent endocytosis for SV retrieval. Neurotransmitters are released through the Ca- and SNARE-dependent fusion of SVs with the presynaptic plasma membrane. Following exocytosis, endocytosis occurs immediately to retrieve SV membrane and fusion machinery for local recycling and thus maintain the homeostasis of synaptic structure and sustained neurotransmission.
View Article and Find Full Text PDFUp-regulation of multidrug resistance-associated protein 1 (MRP1) is regarded as one of the main causes for multidrug resistance (MDR) of tumor cells, leading to failure of chemotherapy-based treatment for a multitude of cancers. However, whether silencing the overexpressed MRP1 is sufficient to reverse MDR has yet to be validated. This study demonstrated that RNAi-based knockdown of MRP1 reversed the increased efflux ability and MDR efficiently.
View Article and Find Full Text PDFThis paper was aimed to study conserved motifs of voltage sensing proteins (VSPs) and establish a voltage sensing model. All VSPs were collected from the Uniprot database using a comprehensive keyword search followed by manual curation, and the results indicated that there are only two types of known VSPs, voltage gated ion channels and voltage dependent phosphatases. All the VSPs have a common domain of four helical transmembrane segments (TMS, S1-S4), which constitute the voltage sensing module of the VSPs.
View Article and Find Full Text PDFpIRES2-EGFP was employed and a non-target shRNA expressing plasmid was constructed to simulate overexpression and RNAi (RNA interference) experiments. Transfection of pIRES2-EGFP into HEK293A cells by cationic lipids VigoFect demonstrated that transfection efficiency increased in a dose-dependent manner with amount of DNA plasmid used, and optimal transfection time and cell density should be identified to reach a compromise of higher transfection efficiency and lower toxicity. Co-transfection experiments indicated that the two co-transfected plasmids were equivalently delivered into the same cells, and the co-transfection efficiency was rarely affected by cell density and proportion of the two plasmids.
View Article and Find Full Text PDF