Publications by authors named "Zhenlei Dai"

The dependency of low-dimensional embedding to principal component space seriously limits the effectiveness of existing robust principal component analysis (PCA) algorithms. Simply projecting the original sample coordinates onto orthogonal principal component directions may not effectively address various noise-corrupted scenarios, impairing both discriminability and recoverability. Our method addresses this issue through a generalized PCA (GPCA), which optimizes regression bias rather than sample mean, leading to more adaptable properties.

View Article and Find Full Text PDF

With the dramatic increase of dimensions in the data representation, extracting latent low-dimensional features becomes of the utmost importance for efficient classification. Aiming at the problems of weakly discriminating marginal representation and difficulty in revealing the data manifold structure in most of the existing linear discriminant methods, we propose a more powerful discriminant feature extraction framework, namely, joint sparse locality-aware regression (JSLAR). In our model, we formulate a new strategy induced by the nonsquared L norm for enhancing the local intraclass compactness of the data manifold, which can achieve the joint learning of the locality-aware graph structure and the desirable projection matrix.

View Article and Find Full Text PDF