Angew Chem Int Ed Engl
December 2024
Designing high-performance electrocatalysts with superior catalytic activity and stability is essential for large-scale hydrogen production via water electrolysis. Heterostructure nanoarrays are promising candidates, though achieving both high activity and stability simultaneously, especially under high current densities, remains challenging. To this end, we have developed a cascade reaction process that constructs a series of heterostructure nanoarrays with rich heterointerfaces.
View Article and Find Full Text PDFMagnesium metal batteries (MMBs), recognized as promising contenders for post-lithium battery technologies, face challenges such as uneven magnesium (Mg) plating and stripping behaviors, leading to uncontrollable dendrite growth and irreversible structural damage. Herein, we have developed a Mg foil featuring prominently exposed (002) facets and an architecture of nanosheet arrays (termed (002)-Mg), created through a one-step acid etching method. Specifically, the prominent exposure of Mg (002) facets, known for their inherently low surface and adsorption energies with Mg atoms, not only facilitates smooth nucleation and dense deposition but also significantly mitigates side reactions on the Mg anode.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2024
Constructing lithiophilic carbon hosts has been regarded as an effective strategy for inhibiting Li dendrite formation and mitigating the volume expansion of Li metal anodes. However, the limitation of lithiophilic carbon hosts by conventional surface decoration methods over long-term cycling hinders their practical application. In this work, a robust host composed of ultrafine MgF nanodots covalently bonded to honeycomb carbon nanofibers (MgF/HCNFs) is created through an in situ solid-state reaction.
View Article and Find Full Text PDFLithium-sulfur batteries have emerged as one of the promising next-generation energy storage devices. However, the dissolution and shuttling of polysulfides in the electrolyte leads to a rapid decrease in capacity, severe self-discharge, and poor high-temperature performance. Here, we demonstrate the design and preparation of a MoC nanoparticle-embedded carbon nanosheet matrix material (MoC/C) and its application in lithium-sulfur battery separator modification.
View Article and Find Full Text PDFLithium-oxygen batteries have received extensive attention due to their high theoretical specific capacity, but problems such as high charging overpotential and poor cycling performance hinder their practical application. Herein, a pulsed current, which merits its relaxation phenomenon, is applied during the charging cycle to address the abovementioned problems. Pulsed charging can not only reduce the charging overpotential, but also control the mass transfer and distribution of lithium ions.
View Article and Find Full Text PDFPurpose: The aim of this study was to generate periodic microstructures on pure titanium surface by femtosecond laser-etching after sandblasting, and to assess the physicochemical properties of its surface.
Methods: Twelve pure titanium discs with diameter of 10 mm and thickness of 4 mm were used and divided into 3 groups according to different surface treatment methods: group S (sandblasting surface), group SA (sandblasting surface with acid-etching), and group SL (sandblasting surface with femtosecond laser-etching). Scanning electron microscopy (SEM) was used to observe the surface morphology.