Publications by authors named "Zhenjun Qin"

Article Synopsis
  • * Research indicates that during hypo-salinity stress, bleaching corals show significant immune and stress-related gene upregulation, while unbleaching corals exhibit metabolic gene downregulation and energy adaptation through their symbiotic microorganisms.
  • * The study reveals a shift in symbiotic bacterial communities: bleaching corals have more opportunistic bacteria due to immune damage, while unbleaching corals maintain a higher abundance of beneficial bacteria, suggesting that long-term acclimation may boost some corals' tolerance to hypo-salinity stress
View Article and Find Full Text PDF

The thermal bleaching percentage of coral holobionts shows interspecific differences under heat-stress conditions, which are closely related to the coral-associated microbiome. However, the ecological effects of community dynamics and interactions between Symbiodiniaceae and fungi on coral thermal bleaching susceptibility remain unclear. In this study, we analyzed the diversity, community structure, functions, and potential interaction of Symbiodiniaceae and fungi among 18 coral species from a high thermal bleaching risk atoll using next-generation sequencing.

View Article and Find Full Text PDF

Fungiidae have shown increased thermal adaptability in coral reef ecosystems under global warming. This study analyzes the evolutionary divergence and microbial communities of Fungiidae in the Sanjiao Reef of the southern South China Sea and explores the impact of coral evolution radiation and microbial dynamics on the heat tolerance of Fungiidae. The results found that was an ancient branch of Fungiidae, dating back approximately 147.

View Article and Find Full Text PDF

Epigenetic modifications based on DNA methylation can rapidly improve the potential of corals to adapt to environmental pressures by increasing their phenotypic plasticity, a factor important for scleractinian corals to adapt to future global warming. However, the extent to which corals develop similar adaptive mechanisms and their specific adaptation processes remain unclear. Here, to reveal the regulatory mechanism by which DNA methylation improves thermal tolerance in Pocillopora damicornis under fluctuating environments, we analyzed genome-wide DNA methylation signatures in P.

View Article and Find Full Text PDF

This study comprehensively examined the community dynamics, functional profiles, and interactions of the microbiome in the world's deepest blue hole. The findings revealed a positive correlation between the α-diversities of Symbiodiniaceae and archaea, indicating the potential reliance of Symbiodiniaceae on archaea in an extreme environment resulting from a partial niche overlap. The negative association between the α-diversity and β-diversity of the bacterial community suggested that the change rule of the bacterial community was consistent with the Anna Karenina effects.

View Article and Find Full Text PDF

The large seasonal temperature fluctuations caused by global warming and frequent marine heatwaves pose new challenges to survival of relatively high-latitude marginal reef corals. However, the adaptation strategies of high-latitude marginal corals are not fully understood. We employed integrated approach to investigate the response mechanism of hosts, Symbiodiniaceae, and symbiotic bacteria of marginal reef corals Acropora pruinosa and Pavona decussate in response to large seasonal temperature fluctuations.

View Article and Find Full Text PDF

Life-history strategies play a critical role in susceptibility to environmental stresses for Scleractinia coral. Metabolomics, which is capable of determining the metabolic responses of biological systems to genetic and environmental changes, is competent for the characterization of species’ biological traits. In this study, two coral species (Pocillopora meandrina and Seriatopora hystrix in the South China Sea) with different life-history strategies (“competitive” and “weedy”) were targeted, and untargeted mass spectrometry metabolomics combined with molecular networking was applied to characterize their differential metabolic pathways.

View Article and Find Full Text PDF

Coral ingestion by crown-of-thorns starfish (COTS) is an important cause of coral reef degradation, although the impacts of COTS feeding on coral-associated microbial communities are not well understood. Therefore, in this study, we analyzed the coral tissue-weight, Symbiodiniaceae density (SD), bacterial community composition, and the predicted functions of bacterial genes associated with corals in healthy portions and feeding scars, following COTS feeding. Coral tissue-weight loss rate in the feeding scars was 71.

View Article and Find Full Text PDF

As the problem of ocean warming worsens, the environmental adaptation potential of symbiotic Symbiodiniaceae and bacteria is directly related to the future and fate of corals. This study aimed to analyse the comprehensive community dynamics and physiology of these two groups of organisms in the coral sp. through indoor simulations of heat stress (which involved manually adjusting the temperature between both 26 °C and 34 °C).

View Article and Find Full Text PDF

Coral-associated bacterial communities are paramount for coral ecosystems and holobiont health. However, the role of symbiotic bacteria in the adaptation of high-latitude corals to seasonal fluctuations remains underexplored. Therefore, we used 16S rRNA-based high-throughput sequencing to analyze the symbiotic bacterial diversity, composition, and core bacterial community in high-latitude coral and explored the seasonal fluctuation characteristics of symbiotic bacterial communities.

View Article and Find Full Text PDF

Environmental conditions between the outer reef slope (ORS) and lagoon in tropical atolls are significantly different, but the variations of juvenile coral-microbiomes in the two environments and their relationship with coral thermal acclimatization are poorly understood. We explored this issue based on local water conditions and the microbiome of juvenile corals in the ORS and lagoon in the central South China Sea. Coral-symbiotic Symbiodiniaceae showed significant differences among coral species; Pocillopora verrucosa and Pachyseris rugosa in the ORS, and Acropora formosa in the lagoon were dominated by Durusdinium, but other corals were dominated by Cladocopium.

View Article and Find Full Text PDF

Some scleractinian corals exhibit high thermal adaptability to climate changes, although the mechanism of their adaptation is unclear. This study investigated the adaptability of scleractinian coral Pocillopora damicornis to thermally variable reef environments by applying a nanopore-based RNA sequencing method to characterize different transcription responses that promote heat tolerance of P. damicornis.

View Article and Find Full Text PDF

The healthy status of corals in the isolated atolls of the central South China Sea (SCS) remains unclear. Symbiodiniaceae density (SD) can effectively reflect the thermal tolerance and health of hard corals. Here, the SDs of 238 samples from the Huangyan Atoll (HA) were analyzed.

View Article and Find Full Text PDF
Article Synopsis
  • Regional acclimatization and microbial interactions play a critical role in coral resilience against climate change, yet the relationship between coral microbiomes and their environmental adaptability remains poorly understood.
  • Using generation sequencing techniques, researchers analyzed the composition of microbial communities in two dominant coral species from the South China Sea, finding unique shifts based on geographical and climatic factors.
  • The study highlights that while the Symbiodiniaceae community is consistent in one species, the bacterial community shows variability, and increased bacterial diversity could destabilize coral-microbe symbioses, raising concerns about the impact of human activity on coral health.
View Article and Find Full Text PDF

Coral reef ecosystems cannot operate normally without an effective nitrogen cycle. For oligotrophic coral reef areas, coral-associated diazotrophs are indispensable participants in the nitrogen cycle. However, the distribution of these diazotrophs and the correlation with the physical and chemical variables of the surrounding seawater remain unclear.

View Article and Find Full Text PDF

Field ecological observations indicate that scleractinian coral exposed to early thermal stress are likely to develop higher tolerance to subsequent heat stress. The causes of this phenomenon, however, remain enigmatic. To unravel the mechanisms underlying the increased heat tolerance, we applied different thermal treatments to the scleractinian coral Acropora pruinosa and studied the resulting differences in appearance, physiological index, Symbiodiniaceae and bacterial communities, and transcriptome response.

View Article and Find Full Text PDF

Global warming has degraded coral reef ecosystems worldwide. Some corals develop thermal tolerance by associating with heat-tolerant Symbiodiniaceae. Here, we studied the mechanisms surrounding the dispersal, genetic variation and symbionts interaction of heat-tolerant Durusdinium trenchii across 13° latitudes in the South China Sea (SCS), to explore the possible mechanisms underlying these changes.

View Article and Find Full Text PDF

Coral tissue thickness (CTT) is an effective indicator of the adaptability of corals to environmental stress, but the relationships between the spatial and intergeneric variation of coral tissue across latitudes and tolerance to environmental stress are not well understood. To investigate this, the CTT of 768 specimens of 10 typical coral genera and surrounding seawater parameters were measured in six coral reef regions (CRRs) across the 9-22°N latitudes in the South China Sea (SCS). Results showed significant differences in CTT between different genera of corals and CRRs.

View Article and Find Full Text PDF

It is well-known that the adaptability of coral-Symbiodiniaceae symbiosis to thermal stress varies among coral species, but the cause and/or mechanism behind it are not well-understood. In this study, we aimed to explore this issue based on zooxanthellae density (ZD) and Symbiodiniaceae genus/subclade. Hemocytometry and next-generation sequencing of the internal transcribed spacer region 2 (ITS2) marker gene were used to observe ZDs and Symbiodiniaceae genera/subclades associated with 15 typical coral species in the southern South China Sea (SCS).

View Article and Find Full Text PDF

Anthropogenic nutrient enrichment is considered to be one of the causes resulting in coral reef decline. In order to better understand the trophic status and to further explore the potential impacts of nutrients on the coral reef decline in the South China Sea (SCS), we investigated the nutrient and chlorophyll a (chl a) distributions in the surface water of reef areas across latitudes from 9-22° of the SCS. The results showed that nutrient and chl a concentrations in coastal reefs were obviously higher than those in the central and southern basin.

View Article and Find Full Text PDF

Coral reefs are continuing to decline worldwide due to anthropogenic climate change. The study of the molecular diversity and biogeographical patterns of Symbiodiniaceae, is essential to understand the adaptive potential and resilience of coral-algal symbiosis. Next generation sequencing was used to analyze the Symbiodiniaceae rDNA internal transcribed spacer 2 marker genes from 178 reef-building coral samples in eight coral habitats across approximately 13° of latitude in the South China Sea (SCS).

View Article and Find Full Text PDF

Sea urchins strongly affect reef ecology, and the bacteria associated with their gut digesta have not been well studied in coral reefs. In the current study, we analyze the bacterial composition of five sea urchin species collected from Luhuitou fringing reef, namely , , , , and , using high-throughput 16S rRNA gene-based pyrosequencing. , , and were found to be the dominant bacterial genera in all five species.

View Article and Find Full Text PDF

The contamination profiles of sixteen perfluoroalkyl substances (PFAS) were examined in coral reef fish samples collected from the South China Sea (SCS) where no information about this topic was available in the literature. The results revealed that six PFAS were found in coral reef fish samples from the SCS. Perfluorooctane sulfonate (PFOS) was the most predominant PFAS contaminant detected in most of the samples, with the highest concentration value of 27.

View Article and Find Full Text PDF

Laboratory research has indicated that antibiotics had negative effects on coral growth by disturbing natural microbiota; however, no field studies have reported antibiotic contamination levels and their influence on coral growth in natural coral reef regions (CRRs). This study investigated antibiotic occurrence and sources in the surface water from CRRs that have suffered from rapid coral degradation and evaluated their risk to coral growth. These regions are in the South China Sea, including four coastal and two offshore CRRs.

View Article and Find Full Text PDF

It is well known that different coral species have different tolerances to thermal or cold stress, which is presumed to be related to the density of . However, the intrinsic factors between stress-tolerant characteristics and coral-associated bacteria are rarely studied. In this study, 16 massive coral and 9 branching coral colonies from 6 families, 10 genera, and 18 species were collected at the same time and location (Xinyi Reef) in the South China Sea to investigate the bacterial communities.

View Article and Find Full Text PDF