Publications by authors named "Zhenjie Mu"

ConspectusOxygen electrode catalysis is crucial for the efficient operation of clean energy devices, such as proton exchange membrane fuel cells (PEMFCs) and Zn-air batteries (ZABs). However, sluggish oxygen electrocatalysis kinetics in these infrastructures put forward impending requirements toward seeking efficient oxygen-electrode catalytic materials with a clear active-site configuration and geometrical morphology to study in depth the structure-property relationship of materials. Although transition-metal-nitrogen-carbon (M-N-C) electrocatalysts have shown great prospects currently and potential in oxygen electrocatalysis as promising platinum group metal-free catalysts, the universal pyrolysis operation in the preparation process often inevitably brings about randomness and diversity of active sites, for which it is difficult to determine the structure-activity relationship, understand the catalytic mechanism, and further improve facilities performance.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) with high porosity have garnered considerable interest for various applications owing to their robust and customizable structure. However, conventional COFs are hindered by their narrow pore size, which poses limitations for applications such as heterogeneous catalysis and guest delivery that typically involve large molecules. The development of hierarchically porous COF (HP-COF), featuring a multi-scale aperture distribution, offers a promising solution by significantly enhancing the diffusion capacity and mass transfer for larger molecules.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) offer an exceptional platform for constructing membrane nanochannels with tunable pore sizes and tailored functionalities, making them promising candidates for separation, catalysis, and sensing applications. However, the synthesis of COF membranes with highly oriented nanochannels remains challenging, and there is a lack of systematic studies on the influence of postsynthetic modification reactions on functionality distribution along the nanochannels. Herein, we introduced a "prenucleation and slow growth" approach to synthesize a COF membrane featuring highly oriented mesoporous channels and a high Brunauer-Emmett-Teller surface area of 2230 m g.

View Article and Find Full Text PDF

Immobilization of fragile enzymes in crystalline porous materials offers new opportunities to expand the applications of biocatalysts. However, limited by the pore size and/or harsh synthesis conditions of the porous hosts, enzymes often suffer from dimension limitation or denaturation during the immobilization process. Taking advantage of the dynamic covalent chemistry feature of covalent organic frameworks (COFs), herein, we report a preprotection strategy to encapsulate enzymes in COFs during the self-repairing and crystallization process.

View Article and Find Full Text PDF

Pore environment and aggregated structure play a vital role in determining the properties of porous materials, especially regarding the mass transfer. Reticular chemistry imparts covalent organic frameworks (COFs) with well-aligned micro/mesopores, yet constructing hierarchical architectures remains a great challenge. Herein, we reported a COF-to-COF transformation methodology to prepare microtubular COFs.

View Article and Find Full Text PDF

Lowering platinum (Pt) loadings without sacrificing power density and durability in fuel cells is highly desired yet challenging because of the high mass transport resistance near the catalyst surfaces. We tailored the three-phase microenvironment by optimizing the ionomer by incorporating ionic covalent organic framework (COF) nanosheets into Nafion. The mesoporous apertures of 2.

View Article and Find Full Text PDF

Controllable regulations on the enzyme conformation to optimize catalytic performance are highly desired for the immobilized biocatalysts yet remain challenging. Covalent organic frameworks (COFs) possess confined channels with finely tunable pore environment, offering a promising platform for enzyme encapsulation. Herein, we covalently immobilized the cytochrome c (Cyt c) in the size-matched channels of COFs with different contents of anchoring site, and significant enhancement of the stability and activity (≈600 % relative activity compared with free enzyme) can be realized by optimizing the covalent interactions.

View Article and Find Full Text PDF

The pore apertures dictate the guest accessibilities of the pores, imparting diverse functions to porous materials. It is highly desired to construct crystalline porous polymers with predesignable and uniform mesopores that can allow large organic, inorganic, and biological molecules to enter. However, due to the ease of the formation of interpenetrated and/or fragile structures, the largest pore aperture reported in the metal-organic frameworks is 8.

View Article and Find Full Text PDF

Controllable hierarchical reduction of carbon dioxide (CO) to selectively afford versatile chemicals with specific carbon oxidation state is important but still remains a huge challenge to be realized. Here, we report new zwitterionic covalent organic frameworks ([BE] -TD-COFs), prepared by introducing betaine groups (BE) onto the channel walls of presynthesized frameworks via pore surface engineering methodology, as the heterogeneous organocatalysts for CO reduction. The adjustable density of immobilized BE groups as well as good preservation of crystallinity and porosity inherited from their parent COFs endow [BE] -TD-COFs with highly ordered catalytic site distribution and one-dimensional mass transport pathway in favor of catalysis.

View Article and Find Full Text PDF