Small molecules (SMs) play a pivotal role in regulating microRNAs (miRNAs). Existing prediction methods for associations between SM-miRNA have overlooked crucial aspects: the incorporation of local topological features between nodes, which represent either SMs or miRNAs, and the effective fusion of node features with topological features. This study introduces a novel approach, termed high-order topological features for SM-miRNA association prediction (HTFSMMA), which specifically addresses these limitations.
View Article and Find Full Text PDFMore and more studies have shown that microRNAs (miRNAs) play an indispensable role in the study of complex diseases in humans. Traditional biological experiments to detect miRNA-disease associations are expensive and time-consuming. Therefore, it is necessary to propose efficient and meaningful computational models to predict miRNA-disease associations.
View Article and Find Full Text PDFMicrobes in the human body are closely linked to many complex human diseases and are emerging as new drug targets. These microbes play a crucial role in drug development and disease treatment. Traditional methods of biological experiments are not only time-consuming but also costly.
View Article and Find Full Text PDFIn contemporary research on human action recognition, most methods separately consider the movement features of each joint. However, they ignore that human action is a result of integrally cooperative movement of each joint. Regarding the problem, this paper proposes an action feature representation, called Motion Collaborative Spatio-Temporal Vector (MCSTV) and Motion Spatio-Temporal Map (MSTM).
View Article and Find Full Text PDF