Publications by authors named "Zhenjiao Shang"

Ultrasensitive determination of tumor marker (TM) is of great significance in cancer prevention and diagnosis. Traditional TM detection methods involve large instrumentation and professional manipulation, which complicate the assay procedures and increase the cost of investment. To resolve these problems, an integrated electrochemical immunosensor based on the flexible polydimethylsiloxane/gold (PDMS/Au) film with Fe-Co metal-organic framework (Fe-Co MOF) as a signal amplifier was fabricated for ultrasensitive determination of alpha fetoprotein (AFP).

View Article and Find Full Text PDF

The development of flexible substrate materials and nanomaterials with high electrochemical performance is of great significance for constructing efficient wearable electrochemical sensors for real-time health monitoring. Herein, a wearable electrochemical sweat sensor based on a Ni-Co MOF nanosheet coated Au/polydimethylsiloxane (PDMS) film was prepared for continuous monitoring of the glucose level in sweat with high sensitivity. First, a stretchable Au/PDMS film based three-electrode system was prepared by chemical deposition of a gold layer on the hydrophilic treated PDMS.

View Article and Find Full Text PDF

A noninvasive fiber material-based wearable electrochemical sensor to continuously monitor the glucose level in sweat is highly desirable for smart fabrics for personal diabetes management. To achieve it, the key challenge is to construct fibers with high stretchability and excellent electrochemical performance. Herein, a highly stretchable Ni-Co metal-organic framework/Ag/reduced graphene oxide/polyurethane (Ni-Co MOF/Ag/rGO/PU) fiber-based wearable electrochemical sensor is fabricated for monitoring the glucose level in sweat continuously with high sensitivity and accuracy.

View Article and Find Full Text PDF

It is very important to develop a rapid, simple, low cost point-of-care (POC) method for the early diagnosis of pathogens. In this work, a flexible paper-based electrode based on nickel metal-organic framework (Ni-MOF) composite/Au nanoparticles/carbon nanotubes/polyvinyl alcohol (Ni-Au composite/CNT/PVA) was constructed to detect target human immunodeficiency virus (HIV) DNA by DNA hybridization using methylene blue (MB) as a redox indicator. The CNT/PVA and Ni-Au composite were deposited on the cellulose membrane by vacuum filtration and drop-coating method in turn to obtain Ni-Au composite/CNT/PVA (CCP) film electrode.

View Article and Find Full Text PDF