Uridine diphosphate glycosyltransferases (UDP-GTs, UGTs), which are regulated by genes, play a crucial role in glycosylation. In vivo, the activity of genes can affect the availability of metabolites and the rate at which they can be eliminated from the body. genes can exert their regulatory effects through mechanisms such as post-transcriptional modification, substrate subtype specificity, and drug interactions.
View Article and Find Full Text PDFThe synthesis of colloidal supraparticles (SPs) based on self-assembly of nanoscopic objects has attracted much attention in recent years. Here, we demonstrate the formation of self-limiting monodisperse gold SPs with core-shell morphology based on the building blocks of flexible nanoarms in one step. A flow-based microfluidic chip is utilized to slow down the assembly process of the intermediates, which surprisingly allows for observation of ultrathin gold nanoplates as first intermediates.
View Article and Find Full Text PDFAssemblies of chiral cysteine (CYS) and Au nanorods (GNRs) are constructed in two typical patterns, end-to-end and side-by-side. Impressively, side-by-side assembled GNRs with CYS show obviously stronger plasmonic circular dichrosim (CD) response compared with the end-to-end assemblies. The corresponding theoretical calculation elucidates the intrinsic relationship among geometric structure, electromagnetic interaction, and induced plasmonic CD of the assemblies.
View Article and Find Full Text PDFWe report a strong and reversible CD response through the assembly of helical DNA and Au nanobipyramids (Au NBPs). Compared with common spherical Au nanoparticles or anisotropic Au nanorods, highly purified Au NBPs possess a more intense electromagnetic field and improved surface plasmon resonance. Thus, the assembly of DNA and Au NBPs exhibits an obviously enhanced plasmonic CD response.
View Article and Find Full Text PDFThis report shows that a nanovector composed of peptide-based nanofibrous hydrogel can condense DNA to result in strong immune responses against HIV. This nanovector can strongly activate both humoral and cellular immune responses to a balanced level rarely reported in previous studies, which is crucial for HIV prevention and therapy. In addition, this nanovector shows good biosafety in vitro and in vivo.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2013
The optical coupling between Au nanorods (Au NRs) and chiral quantum dots (QDs) in assemblies is investigated by both experiment and theoretical calculations. The coupled optical activity in the visible-light region can be manipulated by changing either the aspect ratio of Au NRs or the size of QDs (left).
View Article and Find Full Text PDFQuantum dots (QDs) have attracted great attention because of their favorable optical properties and have been widely applied in biomedical fields. However, in recent years, there have been an increasing number of reports about the cytotoxicity of QDs, especially cadmium-containing QDs, which may release cadmium ions to induce cytotoxicity. Importantly, the chemical composition and surface modifications of cadmium-based QDs determine the amount of Cd(2+) released inside the cell.
View Article and Find Full Text PDFThe design and fabrication of chiral nanostructures is a promising approach to realize enantiomeric recognition and separation. In our work, gold nanorod@chiral mesoporous silica core-shell nanoparticles (GNR@CMS NPs) have been successfully synthesized. This novel material exhibits strong and tunable circular dichroism signals in the visible and near-infrared regions due to the optical coupling between the CMS shells and the GNR cores.
View Article and Find Full Text PDFZinc oxide nanoparticles are widely used in sunscreen products because of their chemical stability and capability of blocking harmful ultraviolet rays. However, zinc oxide nanoparticles can also generate reactive species under ultraviolet irradiation. Because nitrite can form reactive nitrogen species under oxidative stress and because it exists in perspiration and cosmetics, we studied the effects of nitrites on the photocatalytic damage of zinc oxide nanoparticles (50 nm and 90 nm) to bovine serum albumin and human keratinocyte cells under ultraviolet irradiation (365 nm and 254 nm).
View Article and Find Full Text PDFThe manipulation of the chirality and corresponding optical activity in the visible-near-infrared (NIR) light region is significant to realize applications in the fields of chemical sensing, enantioselective separation, chiral nanocatalysis, and optical devices. We studied the plasmon-induced circular dichroism (CD) response by one-dimensional (1D) assembly of cysteine (CYS) and gold nanorods (GNRs). Typically, GNRs can form end-to-end assembly through the electrostatic attraction of CYS molecules preferentially attached on the ends of different GNRs.
View Article and Find Full Text PDFJ Am Chem Soc
February 2012
Reversible plasmonic circular dichroism (CD) responses are realized for the first time based on temperature-dependent assembly and disassembly of Au nanorod (Au NR) and DNA hybrids. Compared with the conventional UV-vis absorption spectra, the changes in both intensity and line shape of plasmonic CD signals are much more pronounced, leading to a preliminary detection limit of DNA as low as 75 nM. The mechanism and influence factors of reversible plasmonic CD responses are explored.
View Article and Find Full Text PDFBiochem Biophys Res Commun
June 2008
Protein tyrosine nitration is a prevalent post-translational modification which occurs as a result of oxidative and nitrative stress, it may be directly involved in the onset and/or progression of diseases. Considering the existence of nano titanium dioxide (TiO(2)) in environment and sunscreen products along with the high content of nitrite in sweat, the UV-exposed skin may be a significant target for the photosensitized damage. In this paper, tyrosine nitration of bovine serum albumin (BSA) was initiated in the UV-irradiated reaction mixture containing 0.
View Article and Find Full Text PDF