Publications by authors named "Zhening Pu"

Acetylation is critically required for p53 activation, though it remains poorly understood how p53 acetylation is regulated in glioblastoma (GBM). This study reveals that p53 acetylation is a favorable prognostic marker for GBM, regardless of p53 status, and that Smad1, a key negative regulator of p53 acetylation, is involved in this process. Smad1 forms a complex with p53 and p300, inhibiting p300's interaction with p53 and leading to reduced p53 acetylation and increased Smad1 acetylation in GBM.

View Article and Find Full Text PDF

Background: Glioblastoma multiforme (GBM) is the most aggressive form of brain cancer, and chemoresistance poses a significant challenge to the survival and prognosis of GBM. Although numerous regulatory mechanisms that contribute to chemoresistance have been identified, many questions remain unanswered. This study aims to identify the mechanism of temozolomide (TMZ) resistance in GBM.

View Article and Find Full Text PDF

Detecting mutations related to tumors holds immense clinical significance for cancer diagnosis and treatment. However, the presence of highly redundant wild DNA poses a challenge for the advancement of low-copy mutant ctDNA genotyping in cancer cases. To address this, a Taqman qPCR strategy to identify rare mutations at low variant allele fractions (VAFs) has been developed.

View Article and Find Full Text PDF

mutations are ubiquitous with tumorigenesis in non-small cell lung cancers (NSCLC). By analyzing the TCGA database, we reported that missense mutations are correlated with chromosomal instability and tumor mutation burden in NSCLC. The inability of wild-type nor mutant p53 expression can't predict survival in lung cancer cohorts, however, an examination of primary NSCLC tissues found that acetylated p53 did yield an association with improved survival outcomes.

View Article and Find Full Text PDF

Gene mutations are inevitably accumulated in cells of the human body. It is of great significance to detect mutations at the earliest possible time in physiological and pathological processes. However, genotyping low-copy tumor DNA (ctDNA) in patients is challenging due to abundant wild DNA backgrounds.

View Article and Find Full Text PDF

Temozolomide (TMZ) resistance is a major clinical challenge for glioblastoma (GBM). O-methylguanine-DNA methyltransferase (MGMT) mediated DNA damage repair is a key mechanism for TMZ resistance. However, MGMT-null GBM patients remain resistant to TMZ, and the process for resistance evolution is largely unknown.

View Article and Find Full Text PDF

Background: NF-κB signaling is widely linked to the pathogenesis and treatment resistance in cancers. Increasing attention has been paid to its anti-oncogenic roles, due to its key functions in cellular senescence and the senescence-associated secretory phenotype (SASP). Therefore, thoroughly understanding the function and regulation of NF-κB in cancers is necessary prior to the application of NF-κB inhibitors.

View Article and Find Full Text PDF

Sustained activation of signal transducer and activator of transcription 3 (STAT3) is a critical contributor in tumorigenesis and chemoresistance, thus making it an attractive cancer therapeutic target. Here, SH2 domain-containing adapter protein F (SHF) is identified as a tumor suppressor in glioblastoma Multiforme (GBM) and its negative regulation of STAT3 activity is characterized. Mechanically, SHF selectively binds and inhibits acetylated STAT3 dimerization without affecting STAT3 phosphorylation or acetylation.

View Article and Find Full Text PDF

Background: Epigenetic alterations have been shown to contribute immensely to human carcinogenesis. Dynamic and reversible N6-methyladenosine (m6A) RNA modification regulates gene expression and cell fate. However, the reasons for activation of KIAA1429 (also known as VIRMA, an RNA methyltransferase) and its underlying mechanism in lung adenocarcinoma (LUAD) remain largely unexplored.

View Article and Find Full Text PDF

Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. As the main GIST drivers, gain-of-function mutations in or are closely associated with not only tumor development and progression but also therapeutic response. In addition to the status of KIT and PDGFRA, little is known about other potential GIST-related genes.

View Article and Find Full Text PDF

Previous studies have demonstrated that glucocorticoid receptor β (GRβ) functions as an oncoprotein, regulating the malignant phenotypes and stem-like cell maintaining in human glioblastoma (GBM). Of the glucocorticoid receptor (GR) isoforms, GRβ and GRα are highly homologous, though the mechanism underlying the distinct functions of these two isoforms in GBM has not been clarified. Here by establishing a carboxyl-terminal (COOH-terminal) deletion mutant, we determined that GRβ can be ubiquitinated.

View Article and Find Full Text PDF

Background: Achalasia is an esophageal motility disorder with unknown etiology. Previous findings indicate that immune-mediated inflammatory process causes inhibitory neuronal degeneration. This study was designed to evaluate levels of serological cytokines and chemokines in patients with achalasia.

View Article and Find Full Text PDF

Dilated cardiomyopathy (DCM) is characterized by left or bilateral ventricular dilation and systolic dysfunction without rational conditions, which can lead to progressive heart failure and sudden cardiac death. Most of the pathogenic genes have been reported in adult population by locus mapping in familial cases and animal model studies. However, it still remains challenging to decipher the role of genetics in the etiology of pediatric DCM.

View Article and Find Full Text PDF

Purpose: To evaluate the prognostic effect of the integration of genomic and transcriptomic profiles in breast cancer.

Methods: Eight hundred and ten samples from the Cancer Genome Atlas (TCGA) data sets were randomly divided into the training set (540 subjects) and validation set (270 subjects). We first selected single-nucleotide polymorphism (SNPs) and genes associated with breast cancer prognosis in the training set to construct the prognostic prediction model, and then replicated the prediction efficiency in the validation set.

View Article and Find Full Text PDF

Background: Marfan syndrome (MFS) is an inherited connective tissue disorder affecting the ocular, skeletal and cardiovascular systems. Previous studies of MFS have demonstrated the association between genetic defects and clinical manifestations. Our purpose was to investigate the role of novel genetic variants in determining MFS clinical phenotypes.

View Article and Find Full Text PDF

Introduction: Mosaic loss of chromosome Y (mLOY) is the most commonly detectable mosaic chromosomal event in cancers; however, its underlying relationship with tumorigenesis is still unclear.

Methods: We conducted a mendelian randomization study to systematically investigate the effect of mLOY on lung cancer based on a published genome-wide association study and inferred the causal relationship between mLOY and lung cancer. Kaplan-Meier and Cox regression analyses were used to evaluate the effect of mLOY on lung cancer prognosis.

View Article and Find Full Text PDF

Genome-wide association studies (GWAS) and fine mapping studies have identified multiple lung cancer susceptibility variants in TERT-CLPTM1L region. However, it is still unclear about the relationship between these risk variants and the independent lung cancer risk signals in this region. Therefore, we evaluated the independent susceptibility signals for lung cancer and explored the potential functional variants in this region.

View Article and Find Full Text PDF

Chinese lung cancer patients have distinct epidemiologic and genomic features, highlighting the presence of specific etiologic mechanisms other than smoking. Here, we present a comprehensive genomic landscape of 149 non-small cell lung cancer (NSCLC) cases and identify 15 potential driver genes. We reveal that Chinese patients are specially characterized by not only highly clustered EGFR mutations but a mutational signature (MS3, 33.

View Article and Find Full Text PDF

As a rare type of Congenital Heart Defects (CHD), the genetic mechanism of Total Anomalous Pulmonary Venous Return (TAPVR) remains unknown, although previous studies have revealed potential disease-driving regions/genes. Blood samples collected from the 6 sporadic TAPVR cases and 81 non-TAPVR controls were subjected to whole exome sequencing. All detected variations were confirmed by direct Sanger sequencing.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) participate in the development of breast cancer. Genetic variants in lncRNAs may be involved in their abnormal expressions and associated with cancer risk. In the present study, we performed RNA sequencing on five paired breast cancer tumor and adjacent non-cancerous tissues to obtain differentially expressed lncRNAs.

View Article and Find Full Text PDF