Publications by authors named "Zhenhui Yang"

Stingers, evolved from ovipositors, are an important defense organ for the , , and species. However, the molecular mechanism of stinger development remains unclear. Here, we show that the earliest time point for the appearance of stingers in is at the 1-day-old worker pupal stage based on morphological observations and anatomy from the pre-pupal to adult stages.

View Article and Find Full Text PDF

Objective: To explore the therapeutic effects of needle warming moxibustion (NWM) combined with trigger point massage on shoulder function and stress responses in elderly patients with frozen shoulder (FS), providing clinical guidance.

Methods: A retrospective analysis was conducted on 116 patients with FS treated at the Guangdong Work Injury Rehabilitation Hospital from October 2022 to October 2023. The study included 61 patients who received NWM combined with trigger point massage (research group) and 55 patients who received conventional treatment (control group).

View Article and Find Full Text PDF

Fungal endophytes have been extensively found in most terrestrial plants. This type of plant-microorganism symbiosis generates many benefits for plant growth by promoting nutrient availability, uptake, and resistance to environmental disease or stress. Recent studies have reported that fungal endophytes have a potential impact on plant litter decomposition, but the mechanisms behind its effect are not well understood.

View Article and Find Full Text PDF

Background: Spinach (Spinacia oleracea L.) is a dioecious species with an XY sex chromosome system, but its Y chromosome has not been fully characterized. Our knowledge about the history of its domestication and improvement remains limited.

View Article and Find Full Text PDF

This randomized controlled trial aimed to evaluate the effects of different whole body vibration (WBV) frequencies on concentric and eccentric leg muscle strength, bone turnover and walking endurance after stroke. The study involved eighty-four individuals with chronic stroke (mean age = 59.7 years, SD = 6.

View Article and Find Full Text PDF

A intramolecular oxidative C(sp)-N bond formation mediated by hypervalent iodine(iii) to obtain quinoxalines from readily available -(2-acetaminophenyl)enaminones was developed. A tandem process involving PIDA-mediated intramolecular condensation cyclization and a subsequent elimination was postulated, which was highly efficient and metal-free under mild conditions. Moreover, flexible structural modifications of quinoxalines bearing carbonyl groups are of interest for further transformations as building blocks in organic synthesis.

View Article and Find Full Text PDF

In the version of this article originally published, the accession codes listed in the data availability section were incorrect and the section was incomplete. The text for this section should have read "The genome assembly and gene annotation have been deposited in the NCBI database under accession number QVOL00000000, BioProject number PRJNA483885 and BioSample number SAMN09753102. The data can also be downloaded from the following link: http://www.

View Article and Find Full Text PDF

Modern sugarcanes are polyploid interspecific hybrids, combining high sugar content from Saccharum officinarum with hardiness, disease resistance and ratooning of Saccharum spontaneum. Sequencing of a haploid S. spontaneum, AP85-441, facilitated the assembly of 32 pseudo-chromosomes comprising 8 homologous groups of 4 members each, bearing 35,525 genes with alleles defined.

View Article and Find Full Text PDF

Picolinamide has first been employed as a traceless directing group for the cobalt-catalyzed oxidative annulation of benzylamides with alkynes to synthesize isoquinolines through C-H/N-H bonds activation. Oxygen is used as a terminal oxidant. This protocol exhibits good functional group tolerance and excellent regioselectivity.

View Article and Find Full Text PDF

A convenient "one-pot" regiospecific synthesis of substituted quinoxalines from o-phenylenediamines and ynones under metal-free conditions has been developed. An intermolecular Michael addition reaction, a dehydration condensation, and a base-promoted C-α-CH2-extrusion were involved in this procedure, which features high regioselectivity, efficiency, and environmental friendliness. Various quinoxalines were provided in up to 95% yield for 33 examples.

View Article and Find Full Text PDF

We present the first in silico model of the weak binding actomyosin in the initial powerstroke state, representing the actin binding-induced major structural changes in myosin. First, we docked an actin trimer to prepowerstroke myosin then relaxed the complex by a 100-ns long unrestrained molecular dynamics. In the first few nanoseconds, actin binding induced an extra primed myosin state, i.

View Article and Find Full Text PDF

F-actin serves as a track for myosin's motor functions and activates its ATPase activity by several orders of magnitude, enabling actomyosin to produce effective force against load. Although actin activation is a ubiquitous property of all myosin isoforms, the molecular mechanism and physiological role of this activation are unclear. Here we describe a conserved actin-binding region of myosin named the 'activation loop', which interacts with the N-terminal segment of actin.

View Article and Find Full Text PDF

Most drugs exert their effects via multitarget interactions, as hypothesized by polypharmacology. While these multitarget interactions are responsible for the clinical effect profiles of drugs, current methods have failed to uncover the complex relationships between them. Here, we introduce an approach which is able to relate complex drug-protein interaction profiles with effect profiles.

View Article and Find Full Text PDF

Objective: To evaluate the effect of Wulongdan on the learning and memory abilities of rats with chronic cerebral ischemia and explore the mechanisms.

Methods: Male SD Rat models of chronic cerebral ischemia were established by permanent ligation of the bilateral carotid arteries. Three weeks after the operation, the rats were randomly divided into sham-operated group, chronic cerebral ischemia group (model group), high-dose drug group, low-dose drug group and Yinxingye group and received the corresponding treatments on a daily basis for 5 consecutive weeks.

View Article and Find Full Text PDF

A seesaw-like movement of the relay region upon the recovery step of myosin was recently simulated in silico. In this model the relay helix tilts around its pivoting point formed by a phenylalanine cluster (Phe(481), Phe(482), and Phe(652)), which moves the lever arm of myosin. To study the effect of the elimination of the proposed pivoting point, these phenylalanines were mutated to alanines in two Dictyostelium myosin II motor domain constructs (M(F481A, F482A) and M(F652A)).

View Article and Find Full Text PDF

To investigate the function of the N-terminal immunoglobulin (Ig)-like domain of the human interleukin-6 receptor alpha-chain (hIL-6R), we constructed a soluble human interleukin-6 receptor (shIL-6R) (named EC05, amino acids 20-354) and soluble variants of the shIL-6R lacking the Ig-like domain (named EC70, amino acids 105-354). The two extracellular portions of hIL-6R were expressed as soluble fusion proteins with thioredoxin in Escherichia coli and purified by using Ni-NTA agarose. Western blot showed that purified proteins were immunoreactive with the antibody against hIL-6R.

View Article and Find Full Text PDF

Human interleukin-6 is involved in the maintenance and progression of several diseases such as multiple myeloma (MM), rheumatoid arthritis, or osteoporosis. Our previous work demonstrated that an interleukin-6 antagonist peptide (named PT) possessed potential bioactivity to antagonize the function of hIL-6 and could efficiently induce the growth arrest and apoptosis of XG-7 and M1 cells in a dose-dependent manner. In this study, the theoretical interaction of the peptide PT with its receptor was analyzed further more with molecular docking and molecular dynamics methods.

View Article and Find Full Text PDF

The development of rational methods to design antagonist peptides based on the 3-D structure of protein active region has, to now, been only marginally successful. This has been largely due to the difficulty of constraining the recognition elements of a mimetic structure to the relative conformational and spatial orientations present in the parent molecule. According to the 3-D complex structure of human interleukin-6 (hIL-6) and its receptor (hIL-6R), a novel antagonist peptide (named PT), which possessed potential bioactivity of hIL-6, was designed by the means of distance geometry, molecular modeling and molecular dynamics trajectory analysis.

View Article and Find Full Text PDF

Based on the complex crystal structure of human interleukin-6 (hIL-6) and its receptor (hIL-6R), a novel hIL-6 antagonist peptide (named PT) was designed using computer-guided design method. Dealing with molecular docking and molecular dynamics methods, the interaction between PT and hIL-6R was analyzed. The theoretical studies showed that PT possessed very high affinity to hIL-6R and offered a practical means of imposing long-term blockade of hIL-6 activity in vivo.

View Article and Find Full Text PDF